
Vague Content and Structure (VCAS) Retrieval for
Document-Centric XML Collections

Shaorong Liu, Wesley W. Chu and Ruzan Shahinian
UCLA Computer Science Department, Los Angeles, CA, USA 90095

{sliu, wwc, ruzan}@cs.ucla.edu
ABSTRACT
Querying document-centric XML collections with structure
conditions improves retrieval precisions. The structures of such
XML collections, however, are often too complex for users to
fully grasp. Thus, for queries regarding such collections, it is
more appropriate to retrieve answers that approximately match
the structure and content conditions in these queries, a process
also known as vague content and structure (VCAS) retrieval.
Most existing XML engines, however, only support content-only
(CO) retrieval and/or strict content and structure (SCAS) retrieval.
To remedy these shortcomings, we propose an approach for
VCAS retrieval using existing XML engines. Our approach first
decomposes a VCAS query into a SCAS sub-query and a CO sub-
query, then uses existing XML engines to retrieve SCAS results
and CO results for the decomposed sub-queries, and finally
combines results from both retrievals to produce approximate
results for the original query. Further, to improve retrieval
precision, we propose two similarity metrics to adjust the scores
of CO retrieval results by their relevancies to the path condition
for the original query target. We evaluate our VCAS retrieval
approach through extensive experiments with the INEX 04 XML
collection and VCAS query sets. The experimental results
demonstrate the effectiveness of our VCAS retrieval approach.

1. INTRODUCTION
The increasing use of the eXtensible Markup Language (XML) in
scientific data repositories, digital libraries and web applications
has increased the need for effective retrieving of information from
these XML repositories. The INitiative for the Evaluation of XML
retrieval (INEX) [1], for example, was established in April 2002
and has prompted researchers worldwide to promote the
evaluation of effective XML retrieval.
XML information can be retrieved by means of either content-
only (CO) or content-and-structure (CAS) queries. CO queries,
similar to keyword searches in text retrieval, contain only content
related conditions. CAS queries contain both content and structure
conditions, in which users specify not only what a result should
be about (via content conditions) but also what that result is (via
structural constraints). Thus, CAS queries are more expressive
and have better retrieval precision as demonstrated in past
research [10, 11, 13]. Specifying exact structural constraints in
queries for document-centric XML collections, however, is not an
easy task. Such collections are usually marked up with a large
variety of tags. For example, there are about 170 different tags in
the INEX document collection. Thus, it is often difficult for users
to completely grasp the structure properties of such collections
and specify the exact structural constraints in queries. Therefore,

for queries regarding such collections, it is more appropriate to
retrieve answers that approximately match the structure and
content conditions in these queries, a process also known as vague
content and structure (VCAS) retrieval. For example, suppose a
user is looking for article sections about “internet security.” The
VCAS retrieval may return article paragraphs about “internet
security” to the user, even though they do not strictly satisfy the
query’s structural constraint (i.e., article sections).
Most existing XML engines, however, only support content only
retrieval and/or strict content and structure (SCAS) retrieval. In
SCAS retrieval, a query’s content conditions can be loosely
interpreted, but the query target’s structural constraint must be
processed strictly. A query target is a special node in the query’s
structure conditions, whose matching elements in XML
collections are returned as results. For example, suppose a user is
interested in article sections about “internet security.” The SCAS
retrieval will not return article paragraphs to the user even though
they are relevant to “internet security.” Thus, compared to the
SCAS retrieval, the new feature in the VCAS retrieval is the
approximate processing of a query target’s structural constraint.
This introduces two challenges to VCAS retrieval: 1) how to
extend existing XML engines to derive results that approximately
satisfy a query target’s structure condition; and 2) how to measure
the relevancy of a result to a query target’s structural constraint.
Many existing approaches to XML VCAS retrieval can be
classified into two categories: 1) content-only approaches (e.g.,
[12]); and 2) relaxation-based approaches [1, 2]. The former
approaches transform a VCAS query into a CO query by ignoring
structural constraints; and such approaches are simple because
XML engines can be directly used for the VCAS retrieval without
any extensions. Such approaches, however, lose the precision
benefits that can be derived from XML structures. The latter
approaches relax a query’s structural constraints and then retrieve
the SCAS results for the relaxed queries, which are approximate
answers to the original query. Such approaches are systematic and
efficient, but they may miss relevant answers due to its strict
structural relaxation semantics.
To remedy these problems, in this paper, we propose a general
approach that extends existing XML engines for CO and SCAS
retrieval to support effective VCAS retrieval. Our approach
combines the simplicity advantage provided by CO retrieval and
the precision advantage rendered by SCAS retrieval. Our retrieval
process consists of three steps:

• Decomposition. We decompose a VCAS query into a CO
sub-query and a SCAS sub-query such that both sub-queries
can be processed by existing XML engines.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Database (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

• Retrieval. We use existing XML engines to retrieve CO and
SCAS results for the two sub-queries.

• Combination. Results from the SCAS retrieval are answer to
one part of the original query and results from the CO
retrieval are approximate answers to the remaining part of the
original query. Thus, results from both retrievals can be
combined to produce approximate answers to the original
query.

To improve retrieval precision, we adjust the score of a CO sub-
query result by the relevancy of the result to the path condition
for the query target, which is measured by target path similarity.
We propose two metrics to compute the target path similarity.
To empirically evaluate the effectiveness of the proposed VCAS
retrieval approach, we conduct extensive experiments on the
INEX 04 document collection with all the 33 queries in the VCAS
task. We use the INEX 04 VCAS relevance assessments as the
“gold standard” to evaluate our experimental results.
The rest of the paper is organized as follows. Section 2 introduces
the XML data model, query language and VCAS retrieval task. In
Section 3, we present our XML VCAS retrieval approach and the
similarity metrics. We describe our experimental studies in
Section 4. Section 5 overviews related works and Section 6
concludes the paper.

2. BACKGROUND
2.1 XML Data Model
We model an XML document as an ordered, labeled tree where
each element (attribute) is represented as a node and each
element-to-sub-element (element-to-attribute) relationship is
represented as an edge between the corresponding nodes. We
represent each node as a triple (id, label, <text>), where id
uniquely identifies the node, label is the name of the
corresponding element or attribute, and text is the corresponding
element’s textual content or attribute’s value. Text is optional
because not every element contains textual content. We consider
an attribute as a special sub-element of an element and a reference
IDREF as a special type of value.
For example, Figure 1 shows a tree representation of a sample
XML document collection. Each circle represents a node with the
node id inside the circle and label beside the circle. To distinguish
text nodes from element (attribute) nodes, the text of a node is
linked to the node with a dotted line.
We now introduce the definition for label path, which is useful
for describing the group representation of an XML tree in Section
3. A label path for a node v in an XML tree is a sequence of
slash-separated labels of the nodes on the path from the root node

to v. For example, node 6 in Figure 1 can be reached from the root
node through the path: node 0 -> 1 -> 5 -> 6. Thus, the label path
for node 6 is: /articles/article/body/section.
2.2 Query Language
We use a content-oriented XPath-like query language called
Narrowed Extended XPath I (NEXI) [14], which is introduced by
INEX. NEXI is based on a subset of XPath path expressions [1]
with an extension of about functions. The syntax of NEXI is:

path1[abouts1]//…//pathn[aboutsn]

where each path is a sequence of nodes connected by either
parent-to-child (“/”) or ancestor-to-descendant (“//”) axes; each
abouts is a Boolean combination of about functions.
An about function, in the format of about(path, cont),
requires that a certain context (i.e., path) should be relevant to a
specific content description (i.e., cont). Given an about
function α, we use α.path and α.cont to represent its path
and cont parameters respectively. About functions have non-
Boolean semantics and thus they are the bases for result ranking.
With the introduction of the NEXI query format, now let us look
at a sample query in the NEXI format. For example, suppose a
user is searching for information on ‘route planning’ in articles
that give an overview of intelligent transportation systems. Since
‘route planning’ is only one aspect of an intelligent transportation
system, the user limits the search on ‘route planning’ to document
components, such as section. Thus she formulates her
information needs in the following NEXI query Q1.

Q1: //article[about(.//title, overview) and
about(., intelligent transportation system)]
//body///section[about(., route planning)]

With the description of the NEXI query format, we now introduce
some notations and terminologies, which are useful for describing
our VCAS retrieval methodology in Section 3.
Given a NEXI query Q in the format of path1[abouts1]
//…//pathn[aboutsn], we call the last node on pathn, whose
matches are returned as results, the query target. For example, in
Q1, node section is the query target. Further, we define target
content condition, denoted as Ct(Q), to be the union of the
content descriptions in aboutsn. For instance, ‘route planning’ is
Q1’s target content condition. Finally, we call path1, …, pathn-1
the support paths and pathn the target path. We represent the
target path in a query Q as Pt(Q). Support paths and the target
path provide different structural hints to a search engine: support
paths indicate where to search and a target path suggests what to
return. For example, in Q1, //article is the support path and
//body//section is the target path.

articles 0

1 article

2

3 4 title abstract

front_matter 5

6 section

…overview

Intelligent transportation systems…

7 paragraph

body

Figure 1: A tree representation of sample XML document collections.

8

9

section

paragraph

.. route planning…

10

11

article

front_matter

12 title

14 body

15

16

Intelligent transportation systems…

17

18

appendix

paragraph 13 abstract

overview…

section

paragraph .. route
planning…

.. route
planning…

Intelligent
transportation

2.3 VCAS Retrieval
Specifying structure conditions in a CAS query is not an easy
task, in particular for document-centric XML collections with a
large variety of tag names. When users specify structural
constraints in queries, they often have only a limited knowledge
of the structure properties of such collections. In such cases, if we
process a query’s structure conditions strictly, we may miss
results that are not in rigid conformance with the structural
constraints, but are highly relevant to users’ information needs.
Thus, XML vague content and structure (VCAS) retrieval is
introduced. The goal of VCAS retrieval is to help users with
limited structural knowledge make the maximum utilization of
XML structures for more precise retrieval. In VCAS retrieval,
both the structure and content conditions can be processed
approximately. Thus, the relevancy of a result is judged based on
whether it satisfies a user’s information needs, but not on whether
it strictly conforms to the structural constraints of the query. For
example, for the sample query Q1, a user may judge XML nodes
4, 9 and 18 in Figure 1 to be relevant, although these nodes do not
exactly match the structure conditions in Q1.

3. PROCESSING VCAS QUERIES
In this section, we present a general approach to XML VCAS
retrieval, which consists of three steps: decomposition, retrieval
and combinations.

3.1 Decomposition
Given a VCAS query Q, in principle, both its support paths and
target path can be approximately processed. In this paper, we
assume that users are strict in their search contexts but flexible in
returning answers. Therefore, we process support paths strictly
and the target path approximately.
With this assumption, our decomposition strategy is to decompose
a VCAS query Q into two sub-queries: a CO sub-query, Qco,
consisting of the target content condition and a SCAS sub-query,
Qscas, consisting of support paths and all the about functions
associated with these paths. Thus, we can use existing XML
engines to perform CO and SCAS retrievals on the decomposed
sub-queries respectively to collect XML nodes that approximately
satisfy the target path and that strictly conform to the support
paths. The following illustrates our decomposition process:
Q: path1[abouts1]//…//pathn[aboutsn]
Qco: //*[about(.,Ct(Q))], where Ct(Q) is the target
content condition in Q.
Qscas: path1[abouts1]//…// pathn-1[aboutsn-1]
For example, the sample query Q1 in Section 2.2 is decomposed
into the following two sub-queries:
Q1co: //*[about(., route planning)]
Q1scas: //article[about(.//title, overview) and
about(., intelligent transportation system)]
Q1co searches for all the XML nodes relevant to ‘route planning’;
and Q1scas searches for article nodes relevant to ‘intelligent
transportation system’ with a descendant node title about
‘overview’.

3.2 Retrieval
After the query decomposition step, we use an existing XML IR
engine to process the CO sub-query using CO retrieval and the
SCAS sub-query using SCAS retrieval. We use our XML IR

engine [8] to perform both retrievals. Our VCAS retrieval
approach, however, can be used by any XML IR engine. In the
following, we first overview our ranking model, and then describe
how we apply this model to rank the CO and SCAS retrieval
results.

3.2.1 Ranking model
The ranking model used in our XML IR engine is called the
extended vector space model. This mode measures the relevancy
of an XML node v to an about function α, where v satisfies the
path condition in α. The model consists of two components:
weighted term frequency (tfw) and inverse element frequency (ief).
Weighted term frequency. Given a term t and an XML node v,
suppose there are m different descendant nodes of v, say v1’, v2’,
…, vm’, that contain term t in their texts. Let pi (1 ≤ i ≤ m) be the
path from node v to node vi’ and w(pi) be the weight of path pi,
then the weighted term frequency of term t in node v, denoted as
tfw(v, t), is:

(,) (',) ()
1

m
tf v t tf v t w pw iii

= ∗∑
=

That is, the weighted term frequency of a term t in an XML node
v is the sum of the frequencies of t in the text of vi

’ adjusted by the
weight of the path from v to vi. The weight of a path is the product
of the weights of all the nodes on the path, where the weight of a
node is user configurable.
Inverse element frequency. The inverse element frequency of a
term t in an about function α, denoted as ief(t, α), is:

1(,) log
2

N
ief t

N
α =

where N1 is the number of XML nodes that satisfy the path
condition in the about function α, i.e., α.path; and N2 is the
number of XML nodes that satisfy α.path and contain t in texts.
Relevancy score function. The relevancy score of an XML node v
to an about function α, denoted as score(v, α), is the sum of all
the query terms’ weighted frequencies in node v adjusted by their
corresponding inverse element frequencies. That is,

(,) (,) (,)score v tf v t ief tw
t cont

α α
α

= ∗∑
∈ .

The extended vector space model is effective in measuring the
relevancy scores of XML nodes to about functions in SCAS
queries [8]. Relevant nodes to such about functions, however,
usually are of relatively similar sizes because these nodes must
satisfy the path conditions of the about functions. For example,
all the relevant nodes to the about function about(//title,
overview) are title nodes. This, however, may not be the
case for the about function in a CO sub-query Qco. The path
condition of the about function in Qco is a wildcard, which is so
general that all XML nodes are exact matches to the path
condition. Thus, nodes relevant to the about function in Qco are
of varying sizes. The larger a node, the less specific it is to an
about function. Thus, to compute the relevancy of an XML node
v to an about function α either in a CO or a SCAS sub-query, we
modify the score function in (3) to:

(,) (,)(,)
log (). 2

tf v t ief twscore v
wsize vt cont
∗ α

α = ∑
∈α

 (3)

 (4)

 (1)

 (2)

where wsize(v) is the weighted size of a node v. Given an XML
node v, suppose v has r different child nodes v1, v2, .., vr. Let
size(v) be the number of terms in the text in node v, then wsize(v)
is recursively defined as follows:

() () (() ())
1

r
wsize v size v wsize v w vi ii

= + ∗∑
=

That is, the weighted size of a node v is the text size of node v
plus the sum of the weighted size of its child node vi adjusted by
their corresponding weights.

3.2.2 CO retrieval
An XML node v is relevant to a CO sub-query Qco if either the
text of v or that of any descendant node of v satisfies the content
condition in Qco. For example, for the CO sub-query Q1co, the text
of nodes 4, 9 and 18 satisfy the content condition, i.e., route
planning. Thus, nodes 4, 9 and 18 as well as their ancestor
nodes (i.e., nodes 1, 2, 5, 8, 10 and17) are relevant to Q1co.
A CO sub-query Qco contains only one about function. Thus, the
relevancy score of an XML node v to Qco, denoted as score (v,
Qco), is the relevancy score of v to the about function in Qco,
which can be calculated using (4).
3.2.3 SCAS retrieval
An XML node v is relevant to a SCAS sub-query Qscas if it
strictly conforms to the structure conditions in Qscas and
approximately satisfies the content conditions in Qscas. For
example, nodes 1 and 10 in Figure 1 are relevant to Qscas. This is
because both nodes strictly conform to the structure conditions:
both are article nodes with a descendant node title. For
example, node 1 has a descendant node title (i.e., node 3). Also
both article nodes are about ‘intelligent transportation system’
and both title nodes are on ‘overview’.
During query processing, if an XML node v is a match to a query
node with an about function α, then the relevancy score of v to α
is calculated using (4). The relevancy score of a SCAS result v to
Qscas, denoted as score(v, Qscas), is the sum of all the relevancy
scores of the corresponding nodes to the about functions in
Qscas. For example, there are two about functions in Q1scas:
α1: about(//article, intelligent transportation
system)
α2: about(//article//title, overview)
The relevancy score of a SCAS result, say node 1 in Figure 1, to
Q1scas is the relevancy score of node 1 to α1 plus the relevancy
score of node 3 to α2.

3.3 Combination
After the retrieval step, we have two lists of results: one list of
results from the CO retrieval, Rco, and another list of results from
the SCAS retrieval, Rscas. Each result is a pair of (v, s), where v is
an XML node and s is the score indicating the relevancy of v to a
sub-query. For example, for the sample query Q1, we have two
result lists, R1co and R1scas, one for each of its sub-queries. R1co =
{(v4, s4), (v9, s9), (v18, s18), (v1, s1), (v2, s2), (v5, s5), (v8, s8), (v10,
s10), (v17, s17)} and R1scas = {(v1, s1), (v10, s10)}, where vi denotes
node i in Figure 1 and si is the score for vi.
Results from the SCAS retrieval are answers to one part of the
original query and results from the CO retrieval are approximate
answers to the remaining part of the original query. Thus, results
from both retrievals can be combined to produce approximate

answers to the original query. To do so, we focus on results from
the CO retrieval because they are the nodes “matching” the
original query’s target. For each CO result vco, let vscas be a SCAS
result such that vco and vscas are in the same document, then the
relevancy of vco to a query Q, denoted as score(vco, Q), is:

tscore(,) = f(, p) score(,) + score(,)scasco co cov v v v∗ co scasQ (Q) Q Q

where f(vco, Pt(Q)) is a target path similarity with a value between
0 and 1 that measures how well an XML node vco satisfies the
target path in Q, i.e., Pt(Q).
For example, for the sample query Q1, node 4 in Figure 1 is a
result for its CO sub-query Q1co. Node 1 in Figure 1 is a result for
the SCAS sub-query Q1co, which is in the same document as Node
1. Thus, the relevancy of node 4 (i.e., v4) to Q1 can be computed
using (6). That is, score(v4, Q1) = f(v4, Pt(Q))*score (v4, Q1co) +
score(v1, Q1scas) = f(v4, Pt(Q1))*s4 + s1, where s1 and s4 are
computed using (4).
The target path similarity, f(vco, Pt(Q)), is the key in the
combination step. If the label path of an XML node vco is an
exact match to Pt(Q), then f(vco, Pt(Q)) =1. It’s often the case that
the label path of a CO retrieval result vco may not be an exact
match to a query target path. In such cases, we compute the target
path similarity for a CO retrieval result vco to be the maximum
similarity between vco and an XML target node vt where vt is an
exact match to Pt(Q), denoted as sim(vco, vt). That is,

f (, P ()) max{sim(,) | is an exact match to P ()}t tv v v vco co t t=Q Q

For example, the target path similarity for node 4 (i.e., v4) is the
maximum of sim(v4 , v6) and sim(v4 , v8) since both nodes v6 and
v8 match Q1’s target path exactly.
For a given query Q and an XML data tree D, there are usually
many nodes in D whose label paths match the target path in Q
exactly. For example, there are about 65470 different nodes in the
INEX collection that exactly match the target path in Q1. Thus, to
reduce computations, we cluster XML nodes in D with the same
label paths into groups similar to DataGuides[7]. For example,
Figure 2 is a group representation of the XML data tree in Figure
1. Each rectangle represents a group with its identifier and label
next to the rectangle. The numbers inside each rectangle are the
identifiers of the nodes in Figure 1.

In such a group representation, each group represents a unique
label path in D. Thus, we can reduce the computations of (7) by
measuring the target path similarity of a node vco to be the
maximum similarity between the group which vco belongs to, gco,
and a target group gt , i.e., a group whose label path is an exact
match to Pt(Q). That is,

Figure 2: A group representation of the XML tree in Figure 1.

0

1, 10

2, 11 5, 14 17

7, 9, 16

6, 8, 15 18 3, 12 4, 13

g2: front_matter g5: body

 g6: section

g7: paragraph g3: title g4: abstract

 g8: appendix

 g1: article

g0: articles

g9: paragraph

 (5) (6)

 (7)

f (, P ()) max{sim(,) | is an exact match to P ()}t tv g g gco co t t=Q Q

For example, the target path similarity of node 4 (i.e., v4) is
sim(g4, g6) since node v4 is inside group g4, and all the nodes that
are exact matches to Pt (Q), i.e. node 6 and 8, are in group g6.
In the following, we introduce two methods to compute group
similarities by considering groups’ path and content aspects.

3.3.1 Path similarity
The similarity between a group gco and a target group gt, sim(gco,
gt), can be computed based on the similarity between their
corresponding label paths. Let pgco and pgt

 be the label path of

group gco and gt respectively. The greater number of common
prefix nodes these two paths share, the more similar the two
groups are. Thus, sim(gco, gt) is:

| p p |
sim(,)

| p | | p | | p p |
g gco tg gco t

g g g gco cot t

∩
=

+ − ∩

where | pgco ∩ pgt
| represents the number of common prefixing

nodes between pgco and pgt
; | pgco | and | pgt

| denote the

number of nodes on the paths pgco and pgt
. The denominator in

(9) is used for the normalization purpose such that sim(gco, gt) = 1
when gco = gt.

3.3.2 Content similarity
For document-centric XML collections, the path similarity may
not be very accurate in estimating group similarity. For example,
given three paths p1: /article/body/section/title, p2:
/article/body/section and p3: /article/body/section
/paragraph, p1 is as similar to p2 as p3 to p2 according to (9). If a
user is looking for a section regarding specific content, then
according to (9), a title will have the same target path similarity
as a paragraph. Compared to a title, a paragraph, however,
is a better approximation for a section. This is because the
content of a paragraph is much closer to that of a section than
the content of a title to that of a section.
This motivates us to measure the similarity between two groups
based on their corresponding content. We describe the content of
a group gi via a N-vector ig = (tfi1, tfi2, …, tfiN), where N is the
total number of distinct terms in an XML collection and tfik (1 ≤ k
≤ N) represents the frequency of term tfik in group gi. With this
vector representation of a group’s content, the content similarity
between two groups, gco and gt, can be estimated via the cosine of
their corresponding content vectors:

sim(,)
g gco t

g gco t
g g g gco co t t

=

For example, using (10), we find that the similarity between a
section group and a section’s title group in the INEX
document collection is 0.4196, while the similarity between the
section group and a section’s paragraph group is 0.991.

4. EXPERIMENTAL STUDIES
4.1 Experimental Dataset
We use the INEX 04 dataset and all the 33 VCAS queries to
evaluate the effectiveness of our VCAS retrieval methodology.
The INEX 04 dataset, around 500MByte in size, consists of over
12,000 computer science articles from 21 IEEE Computer Society
journals. The documents are marked with about 170 different
tags. A document contains 1532 elements on average and an
element has an average depth of 6.9.
4.2 Test Runs
The following four runs are used to study the effectiveness of our
VCAS retrieval methodology. All the experiments use the same
node weight configurations: uniform weights. That is, w(v) =1 for
any node v in the dataset.

• CO run. In this run, we ignore the structure conditions in a
query and use the query’s content conditions to perform CO
retrieval. This run is used as the baseline for testing the
effectiveness of our VCAS retrieval methodology.

• VCAS-1 run. In this run, we perform the VCAS retrieval with
f=1 for all results. The run is used as a base line to compare the
effectiveness of the path similarity and content similarity metric.

• VCAS-path run. In this run, we perform the VCAS retrieval
using the path similarity in (8) as the target path similarity.

• VCAS-cont run. In this run, we perform the VCAS retrieval
using the content similarity in (9) as the target path similarity.

4.3 Result Evaluation and Analysis
To evaluate the relevancy of an XML document component to a
query topic, the relevance assessment working group in INEX has
proposed a two-dimension relevancy metric (exhaustiveness,
specificity). Exhaustiveness measures the extent to which the
document component discusses the topic of request and specificity
measures the extent to which the document component focuses on
the topic of request. This two-dimension metric is then quantized
to a single relevancy value between 0 and 1. In this paper, we use
two of the most frequently used quantization methods: strict and
generalized. A relevancy value is either 0 or 1 with a strict
quantization; while it could be 0, 0.25, 0.5, 0.75 or 1 with a
generalized quantization.
In our experiments, we use the INEX relevance assessment set
version 3.0 and compute each run’s mean average precision
(MAP) using INEX on-line evaluation tools. Table 1 presents
mean average precisions over all of the 33 query topics using both
strict and generalized quantization methods. The corresponding
ranks compared to all the 51 official submissions returned by
other INEX participating systems are also included.

Strict Generalized Run MAP Rank MAP Rank
CO 0.064 11 0.0716 7

VCAS-1
0.0844

(+31.88%)
5 0.0878

(+22.63%)
5

VCAS-path
0.0886

(+38.44%)
4 0.0887

(+23.88%)
5

VCAS-cont
0.0946

(+47.81%)
4 0.094

(+31.28%)
5

Table 1: Results over all the 33 VCAS topics in INEX 04.

 (8)

 (9)

 (10)

From Table 1, we note that our VCAS retrieval approach
significantly outperforms the CO approach. The VCAS-1 run
outperforms the CO run by 31.88% using the strict quantization
metric. This is because the CO approach ignores XML structures
for simplicity but loses the precision benefit provided by XML
structures. Further, by comparing the VCAS-1 run with the VCAS-
path and VCAS-cont runs, we note that similarity measures further
improve our VCAS retrieval precisions. Also, the content
similarity provides more precision improvement than the path
similarity for the INEX VCAS retrieval task. We note that the
mean average precisions of our VCAS retrieval approach are
relatively high compared to all the 51 official INEX submissions.
For example, the mean average precision of the VCAS-cont run
ranks top 4 (5) using the strict (generalized) quantization method.
We have also observed similar results using other quantization
methods.

5. RELATED WORKS
There is a large body of work on XML information retrieval
(e.g.,[3-6, 8-13]), most of which focuses on effective XML CO
retrieval and SCAS retrieval. For example, Sigurbjörnsson et al
propose a general methodology for processing content-oriented
XPath queries [11]. The key difference between [11] and our
methodology is that: [11] focuses on extending IR engines
designed for CO retrieval to support SCAS retrieval; while our
methodology extends XML engines designed for CO and SCAS
retrievals to support VCAS retrieval.
XML VCAS retrieval is a new task in INEX 04. Many teams
within the INEX initiative conducted VCAS retrievals by
ignoring the query structure conditions (e.g., [12]). In [9], S. Geva
proposed a VCAS retrieval approach by decomposing a query
into multiple sub-queries, where each sub-query contains one
structure filter and one content filter. An XML element is a result
for a sub-query if it satisfies the content filter, but does not
necessarily have to satisfy the structure filter. Results from
different sub-queries are merged and sorted by the number of
filters they satisfy. This approach is simple and effective. Our
work differs [9] in two aspects: the query decomposition
strategies are different; and two similarity metrics are proposed to
measure the relevancy of a VCAS result to a query target path for
improving retrieval precision. No such measure is used in [9].
Query relaxation is also related with XML VCAS retrieval. S.
Amer-Yahia et al have some seminal studies on XML query
relaxation in [1, 2]. They model a XML query as a tree and relax
node and/or edge constraints on the query tree to derive
approximate answers. Algorithms have been proposed to
efficiently derive top-k approximate answers. Our work differs
from [1, 2] in that while they focus more on the efficiency aspect,
we focus on the effectiveness (i.e., retrieval precision) aspect.

6. CONCLUSION
In this paper, we propose an approach for processing XML vague
content and structure (VCAS) retrieval. A content and structure
(CAS) query consists of two parts, i.e., support and target, where
each part contains both path and content conditions. To derive
approximate answers to a query, we decompose a query into two
sub-queries: one sub-query consisting of support path and content
conditions (a SCAS sub-query) and another sub-query consisting
of the target content condition (a CO sub-query). We then process
the SCAS sub-query by SCAS retrieval and the CO sub-query by

CO retrieval. Results from both retrievals are combined to
produce approximate results to the original query. To improve
retrieval precision, we adjust the score of a CO retrieval result by
the relevancy of the result to the target path condition of the
original query, which is measured by target path similarity. We
propose a path similarity and a content similarity metric to
compute the target path similarity. We evaluate our VCAS
retrieval approach and the similarity metrics through extensive
experiments on the INEX 04 dataset and all the 33 VCAS queries.
Our experimental results demonstrated that: 1) our VCAS
retrieval approach, by taking advantage of XML structures,
significantly outperforms the content-only approach; and 2) the
path and content similarity metrics are effective in estimating the
relevance of CO sub-query results to a query target path
constraint. Therefore, they can be used to further improve the
accuracy of the ranking of the retrieved results.

REFERENCES
[1] S. Amer-Yahia, S. Cho, and D. Srivasava. Tree pattern

relaxation. In EDBT, 2002.
[2] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.

FleXPath: Flexible Structure and Full-Text Querying for
XML. In SIGMOD, 2004.

[3] R. Baeza-Yates, N. Fuhr, and Y. Maarek. Second Edition of
the XML and IR Workshop. In SIGIR Forum, 2002.

[4] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A.
Soffer. Searching XML Documents via XML Fragments. In
SIGIR, 2003.

[5] D. Carmel, A. Soffer, and Y. Maarek. XML and Information
Retrieval. Workshop Report. In SIGIR Forum, Fall 2000.

[6] N. Fuhr, M. Lalmas, S. Malik, and Z. Szlavik (eds.)
INitiative for the Evaluation of XML Retrieval (INEX).
Proceedings of the Third INEX Workshop, 2004.

[7] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In VLDB, 1997.

[8] S. Liu, Q. Zou, and W. W. Chu. Configurable Indexing and
Ranking for XML Information Retrieval. In SIGIR, 2004.

[9] S. Geva. GPX – Gardens Point XML Information Retrieval
at INEX 2004. In [6].

[10] T. Schlieder and H. Meuss H. Querying and Ranking XML
Documents. In Journal of American Society for Information
Science and Technology, Volume 53 (6) pp. 489-503, 2002.

[11] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Processing
Content-Oriented XPath Queries. In CIKM, 2004.

[12] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. The
University of Amsterdam at INEX 04. In [6]

[13] A. Trotman. Searching structured documents. Information
Processing and Management, 40:619-632, 2004.

[14] A. Trotman and B. Sigurbjörnsson. Narrowed Extended
XPath I (NEXI). In [6].

[15] INitiative for the Evaluation of XML Retrieval.
http://qmir.dcs.qmul.ac.uk/INEX.

[16] XPath. http://www.w3.org/TR/xpath

