Constraints-preserving Transformation from XML

Document Type Definition to Relational Schema

Dongwon Lee Wesley W. Chu

Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095, USA

Email: {dongwon,wwc}@cs.ucla.edu

Initial Version : January 12, 2000
Last Revised : May 16, 2000

Abstract

As Extensible Markup Language (XML) [5] is emerging as the data format of the internet era, more
needs to efficiently store and query XML data arise. One way towards this goal is using relational
database by transforming XML data into relational format. In this paper, we argue that existing
transformation algorithms are not complete in the sense that they focus only on structural aspects,
while ignoring semantic aspects. We show the kinds of semantic knowledge that needs to be captured
during the transformation in order to ensure correct relational schema at the end. Further, we show
a simple algorithm that can 1) derive such semantic knowledge from the given XML Document Type
Definition (DTD) and 2) preserve the knowledge by representing them in terms of semantic constraints
in relational database terms. By combining the existing transformation algorithms and our constraints-
preserving algorithm, one can transform XML DTD to relational schema where correct semantics and
behaviors are guaranteed by the preserved constraints. Our implementation and complete experimental
results are available from [12].

oy
yct?

UCLA-CS-TR-200001

Contents
1 Introduction

2 Background
2.1 Relational Schema L e e e e
2.2 XML and DTD e e e e e s

2.3 Assumptions L. e e e e e e e e e e e e

3 Transforming DTD to Relational Schema
3.1 Hybrid Inlining Algorithm

4 Semantic Constraints in DTD
4.1 Domain Constraints L e e e e e e e
4.2 Cardinality Constraints L e e
4.3 Inclusion Dependencies (IDs)
4.4 Equality-Generating Dependencies (EGDs)
4.5 Tuple-Generating Dependencies (TGDs)

5 Discovering and Preserving Semantic Constraints
5.1 Data Structures L. e e e
5.2 Discovering Semantic Constraints Lo o Lo
5.3 Preserving Semantic Constraintso o Lo oo

5.4 CPIL: Constraints-preserving Inlining Algorithm
6 Experimental Results

7 Application of the Semantic Constraints
7.1 Semantic Query Optimization oL L e

7.2 Semantic Caching e
8 Related Work

9 Conclusion

w

ST TGN

10
10
11
11
12
12

12
12
13
13
15

17

18
18
19

20

20

1 Introduction

As the World-Wide Web becomes a major mean of disseminating and sharing information, Extensible
Markup Language (XML) [5] is emerging as a possible candidate data format due to its relative simplicity
as compared to SGML and its relative powerfulness as compared to HTML. To query XML data, one
way is to reuse the established relational database techniques by converting and storing XML data in
relational storage. Since the hierarchical XML and the flat relational data models are not fully compliant,
the transformation is not a straightforward task.

To this goal, several XML-to-relational transformation algorithms have been studied. For instance, [18]
presents 3 algorithms that focus on the table level of the schema while [11] studies different performance
issues among 8 algorithms that focus on the attribute and value level of the schema. They all transform
the given XML Document Type Definition (DTD) to relational schema. Similarly, [10] presents a data
mining-based algorithm that instead uses XML documents directly without DTD.

Although all these algorithms work well for the given applications, to a greater or lesser extent, they
miss one important point. That is, the algorithms are specifically designed for applications where users
are given only XML views and resulting relational schema are hidden from them. Thus, there is no need
to worry about direct querying towards the relational schema. However, in applications where XML and
relational data must co-exist or be merged together, queries against both XML and relational views are
expected and certain anomalies can occur due to the result of incomplete transformation. Consider the
following motivating example.

Ezample 1. A DTD regarding conference publications is given:

<!ELEMENT conf (title,year,society,date,paper+)>
<IELEMENT paper (pid,title,...)>

Using the hybrid inlining algorithm (will be explained in detail in Section 3) in [18], the given DTD would
be transformed to the following relational schema:

conf (title,year,society,date)
paper (pid,title,conf_title,conf_year,...)

While the relational schema, correctly captures the structural aspect of the DTD, it does not force correct
semantics. For instance, it cannot prevent a tuple ¢1: paper (100, ’DTD...°,’ER’,2001,...) from being
inserted. However, tuple 1 is inconsistent with semantics of the given DTD since the DTD implies that
the paper cannot exist without being associated with a conference and there is apparently no conference
“ER-2001” yet. In database terms, this kind of violation can be easily prevented by inclusion dependency
saying “paper [conf _title,conf year] C conf[title,year]”. B

The reason of this inconsistency between the DTD and the transformed relational schema is that
transformation algorithms only capture the structure of the DTD and ignore the semantic constraints
hidden in it. In this paper, via our constraints-preserving inlining (CPI) algorithm, we show the kinds
of semantic constraints that can be derived from DTD during transformation, and how to preserve
them by re-writing them in resulting schema notation. Since our algorithm to capture and preserve
semantic constraints from DTD is orthogonal to transformation algorithms, ours can be applied to various
transformation algorithms with little change.

Figure 1 presents an overview of our approach. First, given a DTD, we transform it to a corresponding
relational scheme using an existing algorithm. Second, during the transformation, we discover various

3

CPI Relational Schema

. hybr i d() @ (Relational Scheme)
i@ Fi ndConst rai nt s()I &) @ntegrity ConstrainD
@
XML Semantic Query Query
Query Optimization Results

Figure 1: Overview of our approach. Numbers 1) to 4) specify: 1) transforming schema, 2) discovering
constraints (i.e., FindConstraints(), 3) preserving constraints (i.e., RewriteConstraints(), and 4)
applying constraints.

semantic constraints in XML notation. Third, we re-write the discovered constraints to conform to
relational notation. Finally, in addition, we show 2 motivating examples which utilize the discovered
constraints in step 2.

This paper is organized as follows. Section 2 gives a brief introduction of XML and DTD. In Section 3,
one transformation algorithm is discussed in detail. Section 4 presents various semantic constraints that
are hidden in DTD. Section 5 proposes our algorithm to preserve such constraints during transformation.
Section 6 reports some experimental results that we have conducted. Section 7 shows examples that use
the constraints found by our method. Related work is given in Section 8.

2 Background

2.1 Relational Schema

In general, the overall design of the database is called the database schema. We define a relational schema,
R to be composed of a relational scheme (S) and semantic constraints (A). That is, R = (S, A). In turn,
the relational scheme S is a collection of table schemes such as r(a1, ..., ax), where a; is the i-th attribute
in the table r and the semantic constraints A is a collection of various semantic knowledge such as domain
constraints, inclusion dependency, equality-generating dependency, tuple-generating dependency, etc.

2.2 XML and DTD

XML is a textual representation of the hierarchical data that is being defined by the World-Wide Web
Consortium [5]. The meaningful piece of the XML document is bounded by matching starting and ending
tags such as <name> and </name>. In XML, tags are defined by users while in HTML, permitted tags are
pre-defined. Thus, XML is a meta-language that can be used for defining other customized languages.
Using the Document Type Definition (DTD), users can define the structure of the XML document of
particular interest. A DTD in XML is very similar to a schema in a relational database. The main
building blocks of DTD are elements and attributes, which are defined by the keywords <!ELEMENT> and
<VATTLIST>, respectively. In general, components in DTD are specified by the following BNF syntax:

<!ELEMENT> <element-name> <element-type>
<!ATTLIST> <attribute-name> <attribute-type> <attribute-option>

Table 1: A DTD for Conference.

<!DOCTYPE Conference [
<!ELEMENT conf (title,date,editor?,paper*)>
<!ATTLIST conf id ID #REQUIRED>
<!ELEMENT title (#PCDATA) >
<!ELEMENT date EMPTY>

<!ATTLIST date year CDATA #REQUIRED
mon CDATA #REQUIRED
day CDATA #IMPLIED>

<!ELEMENT editor (personx)>

<!ATTLIST editor eids IDREFS #IMPLIED>

<!ELEMENT paper (title,contact?,author,cite?)>

<!ATTLIST paper id ID #REQUIRED>

<!ELEMENT contact EMPTY>

<!ATTLIST contact aid IDREF #REQUIRED>

<!ELEMENT author (persont+)>

<!ATTLIST autho id ID #REQUIRED>

<!ELEMENT person (name,email?)>

<!'ATTLIST person id ID #REQUIRED>

<!ELEMENT name EMPTY>

<!ATTLIST name fn CDATA #IMPLIED
1n CDATA #REQUIRED>

<!ELEMENT email (#PCDATA) >

<!ELEMENT cite (paper*)>

<!ATTLIST cite id ID #REQUIRED
format (ACM|IEEE) #IMPLIED>

1>

For instance, Table 1 shows a DTD for Conference which states that a conf element can have four
sub-elements: title, date, editor and paper in that order. As common in regular expression, 0 or 1
occurrence (i.e., optional) is represented by the symbol ?, 0 or more occurrences is represented by the
symbol *, and 1 or more occurrences is represented by the symbol +. A sub-element without any such
symbols (e.g., title) represents a mandatory one.

Keywords #PCDATA and CDATA are used as string types for elements and attributes, respectively.
For instance, the type of the title element is defined as #PCDATA so that title element can be arbi-
trary character data. <attribute-option> can be either #REQUIRED or #IMPLIED. An attribute with
a #REQUIRED option is a mandatory one while an attribute with a #IMPLIED option is an optional one.
<attribute-type> keywords ID and IDREF are used for the pointed and pointing attributes, respectively.
IDREFS is a plural form of IDREF. For instance, the author element must have a mandatory id attribute
and this attribute is used when other attributes point to this attribute. On the other hand, the contact
element has a mandatory aid attribute that must point to the id attribute of the contacting author of
the current paper. One interesting definition in Table 1 is the cite element; it can have zero or more
paper elements as sub-elements, thus creating a cyclic definition.

Table 2: A valid XML document conforming to the DTD for Conference in Table 1.

<conf id="er99">
<title>Int’1 Conference on Conceptual Modeling (ER)</title>
<date>
<year>1999</year> <mon>May</mon> <day>20</day>
</date>
<editor eids="sheth bossy">
<person id="klavans">
<name fn="Judith" ln="Klavans" /> <email>klavans@cs.columbia.edu</email>
</person>
</editor>
<paper id="pl">
<title>Indexing Model for Structured Documents</title>
<contact aid="dao"/>
<author>
<person id="dao"> <name fn="Tuong" ln="Dao" /> </person>
</author>
</paper>
<paper id="p2">
<title>Logical Information Modeling of Heterogeneous Digital Assets</title>
<contact aid="shah"/>
<author>
<person id="shah">
<name fn="Kshitij" 1ln="Shah" />
</person>
<person id="sheth">
<name fn="Amit" ln="Sheth" />
<email>amit@cs.uga.edu</email>
</person>
</author>
<cite id="c100" format="ACM">
<paper id="p3">
<title>Making Sense of Scientific Information on World Wide Web</title>
<author>
<person id="bossy'">
<name fn="Marcia" ln="Bossy" />
</person>
</author>
</paper>
</cite>
</paper>
</conf>
<paper id="p7">
<title>Constraints-preserving Transformation from the XML...</title>
<contact aid="lee"/>
<author>
<person id="lee">
<name fn="Dongwon" 1ln="Lee" /> <email>dongwon@cs.ucla.edu</email>
</person>
</author>
<cite id="c200" format="IEEE" />
</paper>

Table 2 shows a valid XML document conforming to the DTD for Conference. The document
represents a portion of the fictional ER conference held in 1999. The first two paper elements are
described with id="p1" and id="p2", respectively. The paper element with id="p2" further has a cite
element that describes the references in the paper. The paper element with id="p7" shows an example
of the valid XML document that is not rooted at conf element. Note that a valid XML document can
be rooted at any level of the DTD hierarchy as long as their sub-elements and attributes follow the DTD
syntax.

2.3 Assumptions

Without loss of generality, to simplify our presentation, we assume that XML documents have the fol-
lowing properties:

1. The XML documents are all valid. That is, the document has a DTD and conforms to that DTD.
Elements may be nested only in the way described by the DTD and may only have attributes allowed
by the DTD. When a DTD is not available, we assume that we can infer a DTD by applying DTD
inference algorithms such as [10, 14].

2. Since the focus of this paper is on the data aspect, XML features such as entities or notations are
not covered.

3. In general, DTD can be complex. Especially, the sub-elements definition part can be declared in a
complicated and redundant way. For instance, a definition <!ELEMENT parent (child#**|child?#)>
is valid, but can be further simplified to <!ELEMENT parent (child*)>. We assume that input
DTD has been already simplified using a technique in [18].

3 Transforming DTD to Relational Schema

Transforming a hierarchical XML model to a flat relational model is not a trivial task. There are several
difficulties including non 1-to-1 mapping, set values, recursion, and fragmentation issues [18]. Recently,
the idea of using relational databases for XML storage system has attracted a lot of attention and several
transformation algorithms have been proposed (e.g., [18, 11, 10, 4]). For a better presentation, we chose
one particular transformation algorithm, called the hybrid inlining algorithm [18]. It is chosen since it
exhibits the pros of the other two competing algorithms in [18] without severe side effects and it is a more
generic algorithm than those in [4, 10]. Since issues of discovering and preserving semantic constrains
in this paper is orthogonal to that of transformation algorithms, our technique can be applied to other
transformation algorithms easily.

3.1 Hybrid Inlining Algorithm
The hybrid algorithm essentially does the following':

1. Given a DTD, create a DTD graph that represents the structure of the DTD. A DTD graph can be
constructed when parsing the given DTD. Its nodes are elements, attributes, or operators in DTD.

'Note that we modified the hybrid algorithm a bit for a better presentation and corrected a few minor problems, but the
crux of the algorithm still remains intact.

Each element appears exactly once in the graph, while attributes and operators appear as many
times as they appear in the DTD. Further, attributes with #IMPLTIED or IDREFS type are converted
to an operator node “?” or “+” in a DTD graph.

2. Identify top nodes in a DTD graph that are the nodes satisfying any of the following conditions:
1) not reachable from anyone (e.g., source node), 2) direct child of “¥” or “+” operator node,
3) recursive node with indegree > 1, or 4) one node between two mutually recursive nodes with
indegree = 1. Then, starting from a top node T', inline all the elements and attributes at leaf nodes
reachable from T unless they are other top nodes themselves.

3. Attribute names are composed by the concatenated path from the top node to the leaf node using

“” as a delimiter.

4. Use an attribute with ID type as a key if provided. Otherwise, add a system-generated integer key?.

5. If a table corresponds to the shared element with indegree > 1 in DTD, then add a field parent_elm
to denote the parent element to which the current tuple belongs. Further, for each shared element,
a new field fk_X is added as a foreign key to record the key values of parent element X. If X is
inlined into another element Y, then record the Y’s key value in the fk_Y field instead.

6. Inlining an element Y into a table corresponding to another element X (i.e., top node) creates a
problem when an XML document is rooted at the element Y. To facilitate queries on such elements,
a new field root_elm is added to a table 7.

7. If an ordered DTD model is used, a field ordinal is added to record position information of sub-
elements in the element. (For a simpler presentation, we did not show the ordinal field in this

paper.)

For further details of the algorithm, refer to [18]. Figure 2 illustrates a DTD graph that is created from
the DTD in Table 1. Table 3 shows the output of the transformation by the hybrid algorithm.

Among 11 elements in the DTD in Table 1, 4 elements — conf, paper, person, and eids — are
top nodes and thus chosen to be mapped to the different tables. For the top node conf, the elements
date, title, and editor are reachable and thus inlined. Then, the id attribute is used as a key and the
root_elm field is added. For the top node paper, the elements title, contact_aid, author, cite_format
and cite_id are reachable and inlined. Since the paper element is shared by the conf and cite elements
(two incoming edges in a DTD graph), new fields parent _elm, fk_conf and fk_cite are added to record
who and where the parent node was. Note that in the paper table of Table 1, a tuple with id="p7" has
the value "paper" for the root_elm field. This is because the element <paper id="p7"> isrooted in the
DTD in Table 1 without being embedded in other element. Consequently, its parent_elm, fk_conf and
fk_cite fields are null. For the top node person, the elements name fn, name 1n and email are reachable
and inlined. Since the person is shared by the author and editor elements, again, the parent_elm is
added. Note that in the person table of Table 1, a tuple with id="klavans" has the value "editor",
not "paper", for the parent_elm field. This implies that “klavans” is in fact an editor, not an author
of the paper.

*Note that in practice, even if there is an attribute with ID type, one may decide to have a system-generated key for
better performance.

Figure 2: A DTD graph for the DTD in Table 1.

Table 3: A relational scheme (S) along with the associated data that are converted from the DTD in
Table 1 and XML document in Table 2 by the hybrid algorithm. Note that the hybrid algorithm does
not generate semantic constraints (A).

conf conf_editor_eids
id || root_elm | title | date_year | date_mon | date_day 105((1]01 I root_eflm | fk_cgo;f | ‘;:dtsh
con er she
[er99] conf [ER| 1999 [May | 20 | 100002 conf er99 | bossy
paper
id || root_elm | parent_elm [fk_conf | fk_cite | title | contact_aid | citeid | cite_format
pl conf conf er99 - Indexing ... dao - -
p2 conf conf er99 - Logical ... shah c100 ACM
p3 conf cite - c100 Making ... - - -
p7 paper - - - Constraints ... lee c200 IEEE
person
id || root_elm | parent_elm | fk_conf | fk_paper | name_fn | name_In | email
klavans conf editor er99 - Judith Klavans | klavans@cs.columbia.edu
dao conf paper pl Tuong Dao -
shah conf paper p2 Kshitij Shah -
sheth conf paper p2 Amit Sheth amit@Q@cs.uga.edu
bossy conf paper p3 Marcia Bossy -
lee paper paper p7 Dongwon Lee dongwon@cs.ucla.edu

4 Semantic Constraints in DTD

In this section, we present the types of semantic constraints hidden in DTD and show how to preserve
them into relational schema.

4.1 Domain Constraints

When the domain of the attributes is restricted to a certain specified set of values in DTD, it is called
Domain Constraints. For instance, in the following DTD, the domain of the attributes gender and

married are restricted.

<!ATTLIST author gender (malel|female) #REQUIRED
married (yes|no) #IMPLIED>

In transforming such DTD into relational schema, we can enforce the domain constraints using SQL
CHECK clause as follows:

CREATE DOMAIN gender VARCHAR(10) CHECK (VALUE IN ("male", "female"))
CREATE DOMAIN married VARCHAR(10) CHECK (VALUE IN ("yes", "no"))

When the mandatory attribute is defined by the #REQUIRED keyword in DTD, it needs to be forced in
the transformed relational schema as well. That is, the attribute 1n cannot be omitted below.

<!ELEMENT person EMPTY>
<!ATTLIST person fn CDATA #IMPLIED
In CDATA #REQUIRED>

We use the notation “X -» (” to denote that an attribute X cannot be null. This kind of domain

constraint can be best expressed by using the NOT NULL clause in SQL as follows:
CREATE TABLE person (fn VARCHAR(20), 1n VARCHAR(20) NOT NULL, ...)

More complex kinds of domain constraints can be inferred from the specification of the cardinality of the
sub-elements. For instance, below, the conf element must have title and date sub-elements. Further,
the date element must have year and mon sub-elements, but not necessarily day sub-element.

<!ELEMENT conf (title,date,editor?,paperx*)>
<!ELEMENT date (#PCDATA) >
<!ATTLIST date year CDATA #REQUIRED

mon CDATA #REQUIRED

day CDATA #IMPLIED>

Therefore, the corresponding attributes in the transformed table conf in Table 3 should have been defined
as NOT NULL as follows:

CREATE TABLE conf (

title VARCHAR(50) NOT NULL,
date_year NUMBER NOT NULL,
date_mon VARCHAR(3) NOT NULL,

10

4.2 Cardinality Constraints

In DTD declaration, there are only 4 possible cardinality relationships between an element and its sub-
elements as illustrated below:

<!ELEMENT article (title, author+, reference*, price?)>

1. 1-to-{0,1} mapping (“at most” semantics): An element can have either zero or one sub-element.
(e.g., sub-element price)

2. 1-to-{1} mapping (“only” semantics): An element must have one and only one sub-element. (e.g.,
sub-element title)

3. 1-to-{0, ...} mapping (“any” semantics): An element can have zero or more sub-elements. (e.g.,
sub-element reference)

4. 1-to-{1, ...} mapping (“at least” semantics): An element can have one or more sub-elements. (e.g.,
sub-element author)

For convenience, let us call each cardinality relationship type A, B, C, and D, respectively. From these
cardinality relationships, mainly three constraints can be inferred. First, whether or not the sub-element
can be null. This constraint is easily enforced by the NULL or NOT NULL clause. Second, whether or not
more than one sub-elements can occur. This is also known as singleton constraint in [21] and is one
kind of equality-generating dependencies and further discussed in Section 4.4. Third, given an element,
whether or not its sub-element should occur. This is one kind of tuple-generating dependencies and is
further discussed in Section 4.5.

4.3 Inclusion Dependencies (IDs)

An Inclusion Dependency assures that values in the columns of one fragment must also appear as values
in the columns of other fragment and is a generalization of the notion referential integrity.

Trivial form of IDs found in DTD is that “given an element X and its sub-element Y, Y must
be included in X (i.e., Y C X)”. For instance, from the conf element and its four sub-elements in
DTD, the following IDs can be found as long as conf is not null: {conf.title C conf, conf.date C
conf, conf.editor C conf, conf.paper C conf}. Another form of IDs can be found in the attribute
definition part of DTD with the use of the IDREF(S) keyword. For instance, consider the contact and
editor elements in the DTD in Table 1 shown below:

<!ELEMENT person (name,email?)>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT contact EMPTY>

<IATTLIST contact aid IDREF #REQUIRED>
<!ELEMENT editor (personx*)>

<!ATTLIST editor eids IDREFS #IMPLIED>

The DTD restricts the aid attribute of the contact element such that it can only point to the id attribute
of the person element3. Further, the edis attribute can only point to multiple id attributes of the person

3Precisely speaking, the DTD does not tell whom the aid attribute should point to. This information is available only
by human expert.

11

element. As a result, the following IDs can be derived: {editor.eids C person.id, contact.aid C
person.id, cite.pids C paper.id}. IDs can be best enforced by the “foreign key” concept if the
attribute being referenced is a primary key. Otherwise, it needs to use the CHECK, ASSERTION, or TRIGGERS
facility in SQL.

4.4 Equality-Generating Dependencies (EGDs)

The Singleton Constraint [21] restricts an element to have “at most” one sub-element. When an element
type X satisfies the singleton constraint towards its sub-element type Y, if an element instance = of type
X has two sub-elements instances y; and yo of type Y, then y; and ys must be the same. This property
is known as FEquality-Generating Dependencies (EGDs) and denoted by “X — Y7 in database theory.
For instance, two EGDs: {conf — conf.title, conf — conf.date} can be derived from the conf
element in Table 1. This kind of EGDs can be enforced by SQL UNIQUE construct. In general, EGDs
occur in the case of the 1-to-{0,1} and 1-to-{1} mappings in the cardinality constraints.

4.5 Tuple-Generating Dependencies (TGDs)

Tuple-Generating Dependencies (TGDs) in relational model require that some tuples of a certain form
be present in the table and use the “—” symbol. Two useful forms of TGDs from DTD are the child and
parent constraints [20].

1. Child constraint: "Parent — Child" states that every element of type Parent must have at
least one child element of type Child. This is the case of the 1-to-{1} and 1-to-{1,...} mappings in
the cardinality constraints. For instance, from the DTD in Table 1, since the conf element must
contain the title and editor sub-elements, the child constraint conf —» {title, editor} holds.

2. Parent constraint: "Child —» Parent" states that every element of type Child must have a
parent element of type Parent. According to XML specification, there is no notion of root in
DTD. That is, XML documents can start from any level of elements without necessarily specifying
its parent element. Therefore, parent constraints cannot be assured simply by looking at DTD
structure. Rather, it requires some semantic knowledge. In the DTD in Table 1 again, for instance,
the editor and date elements can have the conf element as their parent. Further, if we know that
all XML documents were started at the conf element level rather than the editor or date level,
then the parent constraint {editor, date} —» conf holds. Note that the title —» conf does not
hold since the title element can be a sub-element of either the conf or paper element.

5 Discovering and Preserving Semantic Constraints

In this section, we describe how to systematically discover semantic constraints from DTD and how to

preserve and re-write them in relational terms.

5.1 Data Structures
To help find semantic constraints, we use the following data structure:

Definition 1. An annotated DTD graph (ADG) G is a pair (V, £), where V is a finite set and €
is a binary relation on V. The set V consists of element and attributes in a DTD. Fach edge e € £ is

12

|:] t op node

Figure 3: An Annotated DTD graph for the DTD in Table 1. The associated values (i.e., indegree, type,
tag, and status) for the nodes are not shown.

labeled with the cardinality relationship types (A to D) as defined in Section 4.2. In addition, each vertex
v € V carries the following information:

1. indegree stores the number of incoming edges.
2. type contains the element type name in the content model of the DTD (e.g., conf or paper).

3. tag stores a flag value whether the node is an element or attribute (if attribute, it contains the
attribute keyword like ID or IDREF, etc.).

4. status contains “visited” flag if the node was visited in a depth-first search or “not-visited”.

Note that the cardinality relationship types in ADG considers not only element vs. sub-element
relationships but also element vs. attribute relationships. For instance, from the DTD <!ATTLIST X Y
#IMPLIED Z #REQUIRED) >, two types of cardinality relationships (i.e., type A between element X and
attribute Y, and type B between element X and attribute Z) can be derived. Figure 3 illustrates an
example of ADG for the DTD in Table 1.

5.2 Discovering Semantic Constraints

The cardinality relationships can be used to find semantic constraints in a systematic fashion. Table 4
summarizes 3 main semantic constraints that can be derived from cardinality relationships.
Then, the following FindConstraints() algorithm immediately follows from Table 4.

5.3 Preserving Semantic Constraints

Semantic constraints discovered by FindConstraints() have additional usage as we shall show in Sec-
tion 7 shortly. However, to enforce correct semantics in the newly generated relational schema, we need
to re-write the semantic constraints in XML terms to ones in relational terms. Details are illustrated in
Algorithm RewriteConstraints().

13

Algorithm 1: FindConstraints

Input

: Node v and w

switch edge(v,w) do

case type A v — w;

case type B w is not null; v — w; v — w;
case type C /* empty */;

case type D w is not null; v — w;

Algorithm 2: RewriteConstraints

Input

: Constraints A’ in XML notation

Output: Constraints A in relational notation

switch A’ do
case X » ()

If X is mapped to attribute X’ in table scheme A, then A[X'] cannot be null. (i.e., “CREATE
TABLE A (...X' NOT NULL...)") ;

case X CY

If X and Y are mapped to attributes X’ and Y’ in table scheme A and B, respectively,
then re-write it as A[X'] C B[Y']. (i.e., If Y’ is a primary key of B, then “CREATE TABLE
A (...FOREIGN KEY (X') REFERENCES B(Y')...)”. Else “CREATE TABLE A (...(X') CHECK (X'
IN (SELECT Y/ FROM B))...”) ;

case X — X.Y

If element X and Y are mapped to the same table scheme A (i.e., since Y is not a top
node, Y becomes an attribute of table A) and Z is the key attribute of A, then re-write it

| as A[Z] — A[Y]. (i.e., “CREATE TABLE A (...UNIQUE (Y'), PRIMARY KEY (Z)...)");
case X —» X.Y

if (element X and Y are mapped to the same table) then
Let A be the table and Z be the key attribute of A. Then re-write it as A[Z] — A[Y].
| (i.e., “CREATE TABLE A (.Y NOT NULL, PRIMARY KEY (Z)...)") ;

else

Let the tables be A and B, respectively and Z be the key attribute of A. Then re-write
it as B[fk_A] C A[Z]. (i.e., “CREATE TABLE B (..FOREIGN KEY (fk_A) REFERENCES
A(Z)...)")

return A;

14

Table 4: Cardinality relationships and their corresponding semantic constraints in DTD

‘ Relationship H Type ‘ Symbol ‘ Semantics H not null ‘ EGDs ‘ TGDs ‘

1-t0-{0,1} A ? at most no yes no

1-to-{1} B only yes yes yes
1-to-{0,...} C * any no no no
1-to-{1,...} D at least yes no yes

5.4 CPI: Constraints-preserving Inlining Algorithm

We shall now describe our complete DTD-to-relational schema transformation algorithm: CPI (Constraints-
preserving Inlining) algorithm is a combination of the hybrid inlining algorithm, FindConstraints()
and RewriteConstraints() algorithms. The CPI algorithm is illustrated in CPI() and BuildTable().
Functions used in the algorithm are: Adj[v] returns all nodes adjacent to v in graph, add(A4, B) adds an
attribute A into a table B, concat(A, ..., Z) concatenates strings from A to Z, topnode(G) finds all top
nodes in graph G, and edge(v, w) returns the edge from v to w.

The algorithm first identifies all the top nodes from the ADG. This can be done using algorithms to find
sinks or strongly-connected components in a graph [8]. Then, for each top node, the algorithm generates
a corresponding table scheme using BuildTable (). The associated constraints are found and re-written
in relational terms using FindConstraints() and RewriteConstraints(). Algorithm BuildTable ()
scans an ADG in a depth-first search manner while finding constraints and inlines a new field in the leaf
node. The final output schema is the union of all the table schemes and semantic constraints.

Algorithm 3: CPI
Input : Annotated DTD Graph G = (V, &)
Output: Relational Schema R

V < topnode(G);

for each v € V do

table_def « {};

if v.tag = ’element’ then add(’root_elm’, table_def); /* start where? */
if v.indegree > 1 then

add(’parent_elm’, table_.def); /* shared elements case */

L add(concat(’fk_’, parent(v)), table_def);
W « Adj[v]; w € W;

if any w.tag = *ID’ then add(w.type, table_def);

else add(’id’, table_.def); /* system-generated primary key */
| R < R + hybrid(v, table_def, 0);

return R;

Table 5 contains the semantic constraints that are discovered during the transformation by the CPI
algorithm. Table 6 contains the semantic constraints that are re-written in relational format. As an
example, the CPI algorithm will eventually spit out the following SQL CREATE statement for the paper
table. Note that not only is the relational scheme provided, but the semantic constraints are also ensured
by use of the NOT NULL, KEY, UNIQUE or CHECK constructs.

15

Table 5: A partial list of semantic constraints in XML notation found from the DTD in Table 1. Additional
semantic constraints can be derived by applying Armstrong’s axioms (e.g., transitivity or augmentation,
etc). The last row titled “semantic knowledge” shows the constraints that are inferred by human experts
from both structural constraints as well as semantic knowledge discussed in Sections 4.3 and 4.5.

| Edge Type || Semantic Constraints

conf — conf.editor

conf.date — conf.date.day

A conf.paper — {conf.paper.contact,conf.paper.cite}

conf.paper.cite — conf.paper.cite.format

conf.paper.author.person — conf.paper.author.person.email
conf.paper.author.person.name — conf.paper.author.person.name.fn

conf — {conf.date,conf.id,conf.title}

conf.date — {conf.date.year,conf.date.mon}

conf.paper — {conf.paper.id,conf.paper.author,conf.title}

conf.paper.cite — conf.paper.cite.id

conf.paper.contact — conf.paper.contact.aid

conf.paper.author.person — {conf.paper.author.person.id,
conf.paper.author.person.name}

conf.paper.author.person.name — conf.paper.author.person.name.ln
conf.editor.person — {conf.editor.person.id,conf.editor.person.name}
conf.editor.person.name — conf.editor.person.name.ln

conf — {conf.date,conf.id,conf.title}

conf.date - {conf.date.year,conf.date.mon}

conf.paper - {conf.paper.id,conf.paper.author,conf.title}

conf.paper.cite - conf.paper.cite.id

conf.paper.contact — conf.paper.contact.aid

conf.paper.author.person — {conf.paper.author.person.id,
conf.paper.author.person.name}

conf.paper.author.person.name — conf.paper.author.person.name.ln
conf.editor.person — {conf.editor.person.id,conf.editor.person.name}
conf.editor.person.name — conf.editor.person.name.ln
{conf.id,conf.date,conf.date.year,conf.date.mon,conf.title} - 0
{conf.paper.id,conf.paper.title,conf.paper.author,conf.paper.cite.id,conf.paper.contact.aid} - @
{conf.paper.author.person.id,conf.paper.author.person.name,conf.paper.author.person.name.ln} -»
{conf.editor.person.id,conf.editor.person.name,conf.editor.person.name.ln} -»

conf.paper.author — conf.paper.author.person
conf.paper.author.person -» ()

conf.editor.eids C conf.paper.author.person.id
conf.paper.contact.aid C conf.paper.author.person.id
{conf.date,conf.id,conf.editor} —» conf
{conf.date.year,conf.date.mon,conf.date.day} — conf.date
conf.editor.eids — conf.editor

Semantic {conf.paper.author,conf.paper.id,conf.paper.contact} — conf.paper
knowledge conf.paper.contact.aid — conf.paper.contact
{conf.paper.cite.id,conf.paper.cite.format} - conf.paper.cite
{conf.paper.author.person.id,conf.paper.author.person.name,
conf.paper.author.person.email} — conf.paper.author.person
{conf.paper.author.person.name.fn,conf.paper.author.person.name.ln}
—» conf.paper.author.person.name

16

Algorithm 4: hybrid
Input : Vertex v, TableDef table_def, string attr_name
Output: Relational Schema R

v.status < ’'visited’;
for each w € Adjlv] do
if w.status = ’not-visited’ then
A' + FindConstraints(v, w);
A < RewriteConstraints(A');
hybrid(w, table_def, concat(attr_name, ', w.type));

add(attr_name, table_def);
R + table_def + A;
return R;

CREATE TABLE paper (

id NUMBER NOT NULL,

title VARCHAR (50) NOT NULL,

contact_aid NUMBER,

cite_id NUMBER,

cite_format VARCHAR (50) CHECK (VALUE IN ("ACM", "IEEE")),

root_elm VARCHAR(20) NOT NULL,

parent_elm VARCHAR(20),

fk_cite VARCHAR(20) CHECK (fk_cite IN (SELECT cite_id FROM paper)),
fk_conf VARCHAR (20),

PRIMARY KEY (id),
UNIQUE (cite_id),
FOREIGN KEY (fk_conf) REFERENCES conf (id),
FOREIGN KEY (contact_aid) REFERENCES person(id)

6 Experimental Results

We have implemented the CPI algorithm in Java using the IBM XMIL4J package. Table 7 shows a sum-
mary of our experimentation. We gathered test DTDs from “http://www.oasis-open.org/cover/xml.html”
and [17]. Since some DTDs had syntactic errors caught by the XML4J, we had to modify them manu-
ally. Note that people seldom used the ID and IDREF(s) constructs in their DTDs except the XMI and
BSML cases. The number of the tables generated in relational schema was usually smaller than that of
elements/attributes in DTD due to the inlining effect. The only exception to this phenomenon was the
XMI case, where extensive use of type C and D cardinality relationships resulted in a lot of top nodes in
the ADG.

The number of semantic constraints had close relationship with the way DTD hierarchy was designed
and the type of cardinality relationship used in D'TD. Since the XMI DTD had a lot of type C cardinality
relationship, which could not contribute to the semantic constraints at all, the number of semantic
constraints at the end was small compared to that of elements/attributes in DTD. This was also true for
the 0SD case. On the other hand, in the ICE case, since it used type B cardinality relationship a lot, it
resulted in relatively abundant semantic constraints at the end.

17

Table 6: The semantic constraints in relational notation re-written from the semantic constraints in XML
notation in Table 5.

| Type | Semantic constraints in relational notation |

conf_editor_eids[eids] C person[id]

paper[contact_aid] C person][id]

conf[id] — confltitle,date_year,date_mon,date_day]
EGD paper[id] — conf[title,contact_aid,cite_id,cite_format)
person[id] — conflname_fn name_In email]

conf[id] — confltitle,date_year,date_mon,date_day]
paper[id] — conf[title,contact_aid,cite_id,cite_format)
person[id] - conf[name_fn,name_ In,email]
conf_editor_eids[fk_conf] C conf[id]

paper[tk_conf] C conffid]

paper[tk_cite] C paper[cite_id]

person[tk_conf] C conf[id]

person[tk_paper| C paper][id]
conflid,title,date_year,date mon,root_elm] - {)
conf_editor_eids[id,root_elm] -»
paper[id,title,root_elm] - @

person[id,name In,root_elm] -

ID

TGD

not null

Further detailed reports on the experimentation and the implementation of the CPI algorithm is
available from [12].

7 Application of the Semantic Constraints

The constraints that are discovered during the transformation have two distinct usages: 1) they are
converted into relational database format and used to ensure correct semantics in the resulting relational
schema, and 2) they can be used as semantic knowledge in a variety of areas [1, 2, 13, 21]. Since the focus
of this paper is not on the application of the constraints, in this section, we shall show a few motivating
examples for the area of future research.

7.1 Semantic Query Optimization

The most common usage of the constraints occurs in semantic query optimization where a user’s query
is typically re-written using constraints to a simpler form to minimize the processing cost of the query.
For instance, consider the following query @Q}1: “Find titles of the paper that has at least an author with
non-null last name”. In XQL [16] notation, this query can be written as follows:

XQL: /paper [author/person/name/1n] /title

The [] notation in XQL is called the filter expression. That is, the given query @ finds all paper elements
that have at least one sub-element author z, such that z has a sub-element person y as a child, such
that y has a sub-element name z as a child, such that z has a sub-element 1n as a child. When @); is
translated to SQL based on the relational schema in Table 3, it will be as follows:

SQL: SELECT P.title

18

Table 7: Results of CPI algorithm against the DTDs downloaded from “http://www.oasis-
open.org/cover/xmlhtml” and [17].

DTD DTD Schema Relational Schema
Name | Domain Elm | Attr | ID | IDREF(S) || Table | Attr | = | » | » 0
novel literature 10 1 1 0 5 13 6|9 9
play Shakespeare 21 0 0 0 14 46 |17 | 30 | 30
tstmt religious text 28 0 0 0 17 52 | 17|22 | 22
vCard business card 23 1 0 0 8 19 (18 13| 13
ICE content syndication | 47 | 157 | 0 0 27 283 | 43 | 60 | 60
MusicML | music description 12 17 0 0 8 34 9 |12 12
0SD s/w description 16 15 [0 0 15 3 | 2| 2 2
PML web portal 46 | 293 | O 0 41 355 29|36 | 36
Xbel bookmark 9 13 3 1 9 36 9 11 1
XMI metadata 94 | 633 | 31 102 129 | 3013 |10 | 7 7
BSML DNA sequencing 112 | 2495 | 84 97 104 | 2685 |99 |33 | 33

FROM paper P, person Q

WHERE P.id = Q.fk_paper AND
Q.parent_elm = ’paper’ AND
Q.name_1n != null

Note that the filter expression in XQL had to be translated to join expressions between the paper and
person tables in SQL. However, if we had used the semantic constraints in query formation stage, we
could have first created the following XQL query:

XQL: /paper/title

Intuitively, this makes sense since the filter expression in ()1 is satisfied by all the paper elements. That
is, according to the DTD, all papers must have at least one author sub-element (paper — paper.author),
author must have at least one person sub-element (author — author.person), person must have one
name sub-element (person — person.name), and name must have one 1n attribute (name — name.ln).
Therefore, the filter expression is redundant and does not have to enforced in the translated SQL, resulting
in the following SQL at the end:

SQL: SELECT title
FROM paper

7.2 Semantic Caching

In a client and server architecture, client caching is commonly used to speedup query response time and
to prepare for unexpected network partition. When such client caching uses the user’s query description
as key value to local cache, it is called semantic caching. To maximize the usage of such client caching,
we recently proposed a technique called query matching in [13]. In the query matching technique, a user’s
query is examined to determine if it can be answered from any of the locally stored answers with the help
of semantic knowledge to avoid unnecessary access to the server.

19

Suppose a client cache stored the following query ()1 that selects person elements that are directly
or indirectly related to ER conf element:

XQL: /conf [title=’"ER’]/*/person
This query can be translated to the following SQL query based on the relational schema in Table 3:

SQL: SELECT P2.id, P2.name_fn, P2.name_1ln, P2.name_email
FROM conf C, conf_editor_eids C2, paper P, person P2
WHERE C.title = ’ER’ AND
(C.id = P.fk_conf AND P.id = P2.fk_paper)
OR (C.id = C2.fk_conf AND C(C2.eids = P2.id)

Now the user asks the second query Qo that selects the editor’s names of the ER conf element:
XQL: /conf [title="ER’]/editor/person/name

Then, ()2 does not have to be shipped to the server to select answers since ()9 C Q1. This is intuitively
true since in both XQL queries ()1 and ()2, person.name C person and editor C *. Therefore, given
the cached answer A; to the query (1, answers A, to the query Qo can be obtained by computing
“As = A1 A Q27 on the client side, which is more efficient than sending Q9 to and receiving answers from
the server.

8 Related Work

Constraints and semantic knowledge play an important role in XML query processing [1, 2, 6, 20, 21].
Since our CPI algorithm provides a systematic way of finding and preserving constraints from a DTD, ours
is an improvement to the existing transformation algorithms (e.g, [18, 11]). Work done in STORED [10]
deals with non-valid XML documents. When input XML documents do not conform to the given DTD,
STORED uses a data mining technique to find a representative DTD whose support exceeds the pre-
defined threshold. Since our algorithm to find and preserve constraints are not directly tied to a single
transformation algorithm, ours can be applied to this algorithm as well. [14] also presents a DTD inference
algorithm when it is not known. [4] discusses template language-based transformation from XML DTD
to relational schema which requires human expert to write an XML-based transformation rule.

Some work has been done in [19] dealing with the transformation from relational tables to XML
documents. There has been some transformation work in OODB area as well [7]. Since OODB is
a richer environment than RDB, their work is not readily applicable to our application. The logical
database design methods and their associated transformation techniques to other data models have been
extensively studied in ER research. For instance, [3] presents an overview of such techniques. However,
due to the differences between ER and XML models, those transformation techniques need to be modified
substantially.

9 Conclusion

Since the schema design in relational databases greatly affects the query processing efficiency, how to
transform the XML DTD to its corresponding relational schema is an important problem. Further, due

20

to XML DTD’s peculiar characteristics and its incompatibility between the hierarchical XML and flat
relational model, the transformation process is not a straightforward task.

After showing a variety of semantic constraints hidden implicitly or explicitly in DTD, we presented
two algorithms on: 1) how to discover the semantic constraints using one of the existing transformation
algorithms, and 2) how to re-write the semantic constraints in relational notation. Then, using a complete
example developed through the paper, we showed semantic constraints found in both XML and relational
terms. The final relational schema transformed from our CPI algorithm not only captures the structure,
but also the semantics of the given DTD. Further research direction of using the semantic constraints
towards query optimization and semantic caching is also presented.

References

[1] Abiteboul, S., Buneman, P., Suciu, D. “Data on the Web: From Relations to Semistructured Data
and XML”, Morgan Kaufmann Publishers, 2000

[2] Bohm, K., Aberer, K., Oszu, M. T., Gayer, K. “Query Optimization for Structured Documents Based
on Knowledge on the Document Type Definition”, Proc. IEEE Advances in Digital Libraries (ADL),
Los Alamitos, California, April, 1998

[3] Batini, C., Ceri, S., Navathe, S. B. “Conceptual Database Design: An Entity-Relationship Approach”,
The Benjamin/Cummings Publishing Company, Inc., 1992

[4] Bourret, R. “XML and Databases”, Internet Document, September, 1999 (http://www.informatik.tu-
darmstadt.de/DVS1/staff/bourret /xml/XMLAndDatabases.htm)

[5] Bray, T., Paoli, J., Sperberg-McQueen, C. M. (ed.), “Extensible Markup Language (XML) 1.0”, W3C
Recommendation, Feburary, 1998 (http://www.w3.org/TR/REC-xml)

[6] Che, D., Aberer, K. “A Heuristics-Based Approach to Query Optimization in Structured Document
Databases”, IEEE Int’l Database Engineering and Application Symp., Montreal, Canada, August,
1999

[7] Christophides, V., Abiteboul, S., Cluet, S., Scholl, M. “From Structured Document to Novel Query
Facilities”, Proc. ACM SIGMOD, Minneapolis, Minnesota, May, 1994

[8] Cormen, T. H., Leiserson, C. E., Rivest, R. L. “Introduction to Algorithms”, The MIT Press, 1992

[9] Deutsch, A., Fernandez, M. F., Florescu, D., Levy, A., Suciu, D. “XML-QL: A
Query Language for XML”, Proc. The Query Language Workshop (QL), December, 1998
(http://www.w3.org/ TR /NOTE-xml-ql)

[10] Deutsch, A., Fernandez, M. F., Suciu, D. “Storing Semistructured Data with STORED”, Proc. ACM
SIGMOD, Philadephia, Pennsylvania, June, 1998

[11] Florescu, D., Kossmann, D. “Storing and Querying XML Data Using an RDBMS”, IEEE Data
Engineering Bulletin, 22(3), September, 1999.

[12] Lee, D. “XPRESS Home Page” (http://www.cs.ucla.edu/~ dongwon/xpress/), 2000.

[13] Lee, D., Chu, W. W. “Semantic Caching via Query Matching for Web Sources”, Proc. ACM CIKM,
Kansas City, MO, 1999

[14] Ludéescher, B., Papakonstantinou, Y., Velikhov, P., Vianu, V. “View Definition and DTD Infer-

ence for XML”, Proc. Post-ICDT Workshop on Query Processing for Semistructured Data and Non-
Standard Data Formats, 1999

21

[15] Raggett, D., Hors, A. L., Jacobs, I. (ed.), “HTML 4.0 Specification”, W3C Recommendation, April,
1998 (http://www.w3.org/ TR/REC-html40/)

[16] Robie, J., Lapp, J., Schach, D. “XML Query Language (XQL)”, WWW The Query Language Work-
shop (QL), December, 1998 (http://www.w3.org/TandS/QL/QL98/pp/xql.html)

[17] Sahuguet, A. “Everything You Ever Wanted to Know About DTDs, But Were Afraid to Ask”, Proc.
3rd Int’l Workshop on the Web and Databases (WebDB), Dallas, TX, 2000

[18] Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J. “Relational
Databases for Querying XML Documents: Limitations and Opportunities”, Proc. VLDB, Edinburgh,
Scotland, 1999

[19] Turau, V. “Making Legacy Data Accessible for XML Applications”, Internet Document, 1999
(http://www.informatik.th-wiesbaden.de/”~ turau/veroeff.html)

[20] Wood, P. T. “Optimizing Web Queries Using Document Type Definitions”, Proc. Int’l Workshop on
Web Information and Data Management (WIDM), 1999

[21] Wood, P. T. “Rewriting XQL Queries on XML Repositories”, Proc. 17th British National Conf. on
Databases, 2000

22

