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Abstract. Decision tree induction algorithms scale well to large datasets
for their univariate and divide-and-conquer approach. However, they may
fail in discovering effective knowledge when the input dataset consists of
a large number of uncorrelated many-valued attributes. In this paper we
present an algorithm, Noah, that tackles this problem by applying a mul-
tivariate search. Performing a multivariate search leads to a much larger
consumption of computation time and memory, this may be prohibitive
for large datasets. We remedy this problem by exploiting effective prun-
ing strategies and efficient data structures. We applied our algorithm to a
real marketing application of cross-selling. Experimental results revealed
that the application database was too complex for C4.5 as it failed to
discover any useful knowledge. The application database was also too
large for various well known rule discovery algorithms which were not
able to complete their task. The pruning techniques used in Noah are
general in nature and can be used in other mining systems.

1 Introduction

Decision tree induction algorithms, such as C4.5 [15], are characterized by the
following two properties:

(i) Univariate splitting. The partitioning criteria is based on a single variable
at a time. Therefore, for n independent variables, n partitions are compared
with each other. The variable that generates the partition with the best
statistical significance is chosen as the next test [15].

(ii) Divide—and—Conquer approach. After a univariate split, each child node
covers only a subset of the initial dataset. Thus, subsequent splits are based
on the remaining portions of the training set.

Although these two properties are the backbone of the efficient implementation
of decision tree induction algorithms, they limit their learning ability in certain
situations. In this paper, we first discuss this shortcoming in more details. Then,
we present a rule discovery algorithm, Noah, that performs a more exhaustive
search than C4.5 because it uses a multivariate approach. We introduce effective
pruning strategies to control the combinatorial explosion of the multivariate



search. Then, we discuss the application of Noah to a real marketing cross-selling
application. The application dataset was too large to be processed by CN2 [4],
Ripper [5], CBA [11], and Apriori [1] and too complex for C4.5 to induce useful
knowledge.

2 Preliminaries

The goal of a classifier is to learn a body of knowledge M from an input dataset I.
The derived knowledge M can then be used to predict (i.e., classify) new tuples.

Let us consider a set of n independent variables X1, ..., X, such that each X}
takes on values from a domain Dy, . In addition, we have another variable X,
called the class variable, whose domain is D = {c1, ... , ¢}, with m being the

number of classes. The task of a classifier is:

(i) Given a training dataset I consisting of a set of (n+1)-tuples: (t1,... ,tn,c),
where t;, € Dx, (k=1,...,n) and ¢ € D¢;
(ii) Construct a mapping M : (Dx,,...,Dx,) — Dc.

M can now be used to predict the class of new tuples. Thus, given a n-tuple
t' = (t,th, ... ,t,), such that ¢, € Dx,,i = 1,...,n, the predicted class ¢’ will
be: ¢ = M(t).

Let “X = v” be a term where X is an independent variable and v one of its
values, v € Dx. A term “X = v” covers a tuple ¢t when the attribute X in ¢ has
value v.! Let a pattern be a conjunction of terms. A pattern p covers a tuple t
when all the terms in p cover t. A rule r is a statement of the form: “if p then
®” where p is a pattern and @ is a class distribution. r covers a tuple ¢ when p
covers t. The support of r, supp(r), is the number of tuples in I covered by p. @ is
the class distribution over the tuples covered by r. @ is represented as a vector of
m counters, i.e., one counter for each class, of the form: [ny,na, ... ,n,], where
each n; is the number of tuples in the training set that are (1) covered by r and
(2) whose class attribute is ¢;. Thus, supp(r) = >, n;. The confidence of a rule
“if p then @” is a measure of goodness of the rule, it is function of @ and is often
based on the entropy concept [15]. (More details on the “confidence” in Noah
are discussed later.)

3 Shortcomings of tree induction algorithms

Let us now discuss the shortcomings of the univariate and divide-and-conquer
approaches used in C4.5.

Shortcomings of the univariate splitting. Consider the database of Figure 1(a)
where “PLAY?” is the class attribute. We can synthesize it as: “We do not play
tennis when it is hot and highly humid at the same time; we play in all other

! We assume only discrete variables.



[Temp[ HuMID. [PLAY?)

hot | normal | yes
hot |medium| yes

hot dry yes
cool | high yes
mild | high yes
v_hot| high yes

hot high no
hot | high | no (b) The tree produced by C4.5
hot high no

(a) The training
set

Fig.1: The univariate approach of C4.5 fails to discover the evidence that
(hot,high) leads to no

circumstances.” We ran C4.52 over this dataset; it induced the one-node tree
shown in Figure 1(b). Basically, C4.5 does not find any good predictive variable,
among Temp and Humidity, to split the database upon. Therefore, it is unable
to learn the strong rule: “if Temp=hot and Humid=high then No.” Thus, C4.5
overlooks this piece of knowledge which is described by the interaction of the
two independent variables. Consequently, the tree in Figure 1(b) misclassifies
the tuple <hot,high> which should be classified as “No.”

Shortcomings of the divide-and-conquer approach. Let us now consider the train-
ing set in Figure 2(a). By running C4.5 over it, we get the tree shown in Fig-
ure 2(b). This is a perfect tree because each leaf covers only tuples of the same
class. However, C4.5 did not discover the rule r1:“if Humid=high then No.” This
is because ry is subsumed by the more general rule ry:“if Temp=hot then No”
that was discovered by choosing Temp as the splitting variable at the first it-
eration. Consequently, when we classify the new tuple <cool,high>, C4.5 uses
the rightmost leaf of the tree in Figure 2(b) and predicts “Yes.” In the training
set, however, there is much more evidence of “if Humid=high then No” than “if
Temp=cool then Yes”, therefore, it would make more sense to classify the input
tuple as “No.”

These two shortcomings penalize C4.5 when dealing with datasets that have a
large number of uncorrelated many-valued variables® where each variable, when
taken alone, has low predictive power. Under such circumstances the knowledge
can be scattered among many rectangular portions of the input relation which
are difficult to be learned by C4.5. As discussed in Section 5, C4.5 was not able
to derive a meaningful tree from a database of a real-world application with a

2 We used Release 8 of C4.5 available at www.cse.unsw.edu.au/~quinlan with all
default settings.

3 Intuitively, a “many-valued variable” is a variable that takes on values from a large
domain.



mild | dry yes
mild |[normal| yes
mild | dry yes
hot | high no
hot | high no
hot | high no
hot | high no
hot dry no
hot |normal| no
cool | dry yes

(a) The train-
ing set (b) The tree produced by C4.5

Fig.2: The Divide-and-Conquer approach of C4.5 fails to discover subsumed
patterns

large number of many-valued attributes. This motivated us to develop the Noah
rule discovery algorithm that performs a more exhaustive search than C4.5.

By running Noah over the dataset of Figure 1(a) we get the rule: “if Temp=hot
and Humid=high then No (conf=1, supp=3).” Noah uses this rule when asked
to classify the new case <hot,high> and correctly outputs “No” as the predicted
class. From the dataset of Figure 2(a), Noah discovers, among others, the rule:
“if Humid=high then No.” When asked to classify the new tuple <cool,high>,
Noah uses this rule and properly classifies the new tuple as “No.”

Performing a multivariate search leads to a much larger consumption of com-
putation time and memory, this may be prohibitive for large datasets. We reme-
died to this problem by exploiting effective pruning strategies and efficient data
structures.

4 The NOAH algorithm

Noah is based on the well known level-wise approach used by many rule induction
systems. This approach was first proposed by Agrawal et al. [1] in their Apriori
algorithm for discovering association rules. In such an approach, rules are refined
in a general-to-specific fashion. That is, rules are derived by progressively refining
their pattern at each iteration. The main strength of this algorithm is its ability
of pruning infrequent patterns in a hierarchical way (refer to [12] for a nice
formalization of this problem).

The Noah algorithm is outlined in Figure 3. We first perform a reordering
of the terms in the input relation (line 1 of the algorithm in Figure 3), which
is described in detail in Section 4.1. The set Ry, containing all k-term rules, is
initialized to @ at the beginning of each iteration (line 2). The set Sy (line 4)
contains all possible k-patterns created from the current tuple ¢ at the k-th
iteration (k = 1,2,...). In turn, for each pattern p of Si the set T} of all sub-
patterns of p with cardinality & — 1 is computed. The if statement of line 6 tests



the existence of all such sub-patterns: If all elements of T}, exist in Ri_1 (line 6)
and a rule with pattern p does not already exist in Ry (line 7), then a new rule
with pattern p is created and inserted into Ry (line 8). The class distribution of
the rule with pattern p is then updated (line 9).

Once all tuples in the input set I have been visited, a set of k-term rules
is contained in Rj. We then prune meaningless rules in Ry as follows: For each
rule in Ry, we first perform the minimum support pruning (line 10) as in Apriori.
Then, as proposed by [2], we remove from Ry, all rules having confidence greater
than the minConf threshold (line 11) and store them in Ryipnq (line 12). Notice
that Noah uses a different strategy from other induction systems, such as CN2
and Ripper, that always look for the most overall confident rules. In Noah, the
user sets a lower bound for the rule confidence (minConf). Every rule whose
confidence is greater than minCon f is considered satisfactory. While this strat-
egy may penalize the overall accuracy of the system, it provides early stop of rule
growing and thus reduces the computation complexity and improves the scala-
bility. Furthermore, this allows the implementation of the pruning-ahead “con-
fidence upper bound” strategy (discussed in Section 4.2). Similarly to the mini-
mum support concept, the rationale to setup minConf is application-dependent.
Then, two other pruning techniques are invoked (lines 13 and 14). They are based
on the “confidence upper bound” and “term dependency concepts, their details
are discussed in Section 4.2 and 4.3, respectively.

After the pruning process, Noah starts a new iteration. This process continues
as long as Ry contains rules to be refined. Since we never partition the input
dataset in Noah, all rules are always induced from the entire training set. This
alleviates the small disjunct problem [9,7].

4.1 Terms Reordering

To optimize rule lookup, all terms from the training set are ordered according
to their support. Thus, a new version of the input dataset is created where each
term is replaced by a numerical id that corresponds to the sorted order. Such a
tokenized representation enables Noah to implement a bit index structure to fast
test existence of conjunctions of terms (line 6 of the algorithm in Fig. 3).

4.2 Pruning Rules by “Confidence Upper Bound”

Recall that in Noah the user specifies a minimum value for the rule confidence
(minConf). Once the confidence of a rule is larger than minConf the rule
will not be further refined. This property allows us to prune rules ahead by
estimating, after each iteration, whether or not a certain rule will ever satisfy
the minimum confidence constraint.

In Noah, the rule confidence C(P) is computed as:

S I (p,
R )



input : Input Database I
output : A Set of Rules Ryinal

1 TermReordering( I);

Rfinat — 0;
k—1;
while k =1 or Rp—1 # 0 do
2 Ry — @;
3 foreach tuple t € I do
4 Sk «— {k-patterns from t};
foreach pattern p € Si, do
5 Ti «— {(k-1)-patterns from p};
6 if (T € Ry—1) or (k=1) then
7 if there is not a rule with pattern p in R, then
8 | Ri— RiU { “if p then [0,0,...,0" };
end
9 increment t.class of the rule whose pattern is p;
end
end
end
10 Ry < Ry /{p € Ry | supp(p) < minSupp};
S~ {p € Ry | conf(p) > minConf};
11 Ry, — Ry /S;
12 Ryinal < Rfinat U S;
13 Prune Rj by Confidence Upper Bound (see Section 4.2);
14 Prune Ry by Term Dependency (see Section 4.3);
increment k;
end

Fig. 3: The Noah algorithm

where P is the class probability distribution (p1,pa, ... ,px) and k is the number
of classes. The numerator in (1) is the entropy of the class probability distribu-
tion. The In (k) in the denominator is used to normalize the entropy so that its
value falls in the range 0 to 1. For a given rule, the larger the value of C the
more confident we are about that rule.

In the following we will restrict our study to the two-class case (i.e., k = 2).
We first need to prove the following proposition.

PropPOSITION 1 The confidence C of a given rule is monotonically increasing
w.r.t. the absolute difference between p; and ps (where p; and py are the prob-
ability of the first and second class, respectively).

Proof. We proceed by rewriting (1) in terms of A =| p; —ps |. Let us first consider
the case p; > ps. We have:

(i) p1 + p2 = 1, for the axiom of probabilities.
(ll) A =P1 — P2.

After some manipulations of these two equations, we have p; = % and pp =

%. By substituting p; and py into (1) we rewrite C as function of A. For the
two class case, we have:

A _1+A 1Ay 1-A g 1-A




r 7 1. Given a rule r, being ¢; and cg the
L 4 population of the first and second
class of r, respectively;

Let d = ¢1 + ca2 — minSupp;
r 1 Let csmaur = min(ci, c2);

Let ciarge = maz(ci,c2);

Let ¢csmatt = Csmatl — d;

if csmair < 0 then comarr = 0;

Let tot = csmail + Clarge;

Let p1 = Csmall/tot;

Let p2 = ciarge/tot;

if C([p1, p2]) < minConf, then drop
T | L | | | | 1 the rule r;
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Fig. 4: Rule Confidence is a monotonically Fig. 5: The CUB pruning algorithm

increasing function of | p1 — p2 |

The sign of the first derivative of (2) is always positive in the interval (0,1),
therefore C is monotonically increasing. The plot in Fig. 4 shows the monotonicity
of C w.r.t. p1 — p2. In the same manner, we can prove the monotonicity of C for
the case of p; < pa. a

In our pruning strategy we combine the results of this proposition with the well
known property that rule support does not increase after each rule specialization.
For example, say that minSupp = 100 and minConf = 0.75. Let us assume that
after some iterations Noah found the rule r “if ... then [¢; = 30, co = 80].” The
confidence C of r is 0.59 and its support is 110. Thus, r covers only 10 tuples
more than the specified minSupp threshold. From Proposition 1 we know that
the larger the difference between the two class probabilities, the higher is the
rule confidence C. Therefore, in the most optimistic case, r is specialized in such
a way that 10 tuples with class attribute c¢; are not covered anymore. This max-
imizes the difference between the two class probabilities and, consequently, the
confidence of r. Thus, we get the distribution [¢; = 20, ¢ca = 80]. The confidence
based on this distribution is 0.72. We refer to such confidence value as the Con-
fidence Upper Bound (CUB) of r. Now, since CUB is smaller then minConf, we
drop r at this point as none of its possible specializations will have confidence
larger than minConf and support larger than minSupp at the same time.

The algorithm of this pruning strategy for a two-class case is shown in Fig. 5.
An important aspect of this pruning technique is that it does not introduce any
loss of information, i.e., it pruned ahead rules which will be anyhow pruned later.

4.3 Pruning Rules by Term Dependency

This pruning strategy is based on the concept of informational relevance dis-
cussed by Pearl [14] and, in part, proposed by Bayardo [2] for Apriori. Recall
that a proposition Z is said to be conditionally independent of Y given X if:

P(Z|X)=P(Z|X,Y) (3)



The conditional probability of Z given X does not change after we become
aware of the new proposition Y. In this case, we say that: given X, Y is irrelevant
to Z.

The level-wise approach of Noah offers a natural framework for computing
the probabilities of (3). Suppose that after the first iteration Noah finds the rule
“if X then Z”7 where Z is the class distribution under the condition X. On the
second iteration, Noah refines X by and-ing it with Y. If the class distribution
of this new rule is still Z, then Y is irrelevant to Z given X. Thus, the rule “if
X and Y then Z” provides the same information as “if X then Z.” Therefore,
Noah drops the rule “if X and Y then Z.”

ExAMPLE 1 Consider a medical database containing the variables Sex and Preg-
nant. Consider the rule: “if Pregnant=Yes then Z.” Refining the pattern of this
rule to include the term “Sex=Female” is a waste of time since someone who is
pregnant is always a female. Thus, “Sex=Female” is irrelevant for “Z”, once we
know the fact that “Pregnant=Yes.” ad

Notice that “Pregnant=No” does not give us information on the sex of the
individual, i.e., both men and women can be non-pregnant. Thus, there is no
functional dependency between the two variables. In fact, the dependency applies
only for certain configuration of these variables. Therefore, the case discussed in
the previous example will not be captured by the well known notion of functional
dependency—which has been extensively studied in databases.

Noah uses such dependencies among certain configurations of the input vari-
ables to cut the search space. We do not need to compare the entire distribution
before and after a refinement, in fact, we only need to measure variations of
the rule support for the given refinement. Noah relaxes (3) with an almost equal
concept by means of the user-defined minDepRatio parameter. For example,
say minDepRatio = 0.9 and consider a pattern p and a term y. If

supp(p U {y})

> minDepRatio (4)
supp(p)

then Noah discards the rule “if p and y then ...”. In other words, if at least
90% of the tuples covered by p are also covered by p U {y}, then y is considered
“irrelevant given p.”

Once an irrelevance between a pattern p and a term y has been discovered,
we also check whether p and y are equivalent as follows. If:

supp(p U {y})

> minDepRatio (5)
supp(y)

then also p is irrelevant given y. Thus p and y are equivalent. In other words, p
is a necessary and sufficient condition for y. By summarizing, given a pattern p
and a term y:

— if (4) holds and (5) does not hold, then y is irrelevant given p;
— if both (4) and (5) hold, then y is equivalent to p;



Table 1. Number of rules pruned by min-supp (ms) and term dependency (ti) per
iteration on datasets from UCI repository (minSupp = 1%, minDepRatio = 90%)

Iter.N. Vote Heart Ann Hypo Soybean Adult House Tae Process [Insurance
ms td ms _ td ms td ms  td ms td ms td [ ms td [ms td [ ms td |ms td
#1 0 0 134 0 932 0 772 0 2 0 |22018 0 [2408 O 0O 0 [110 O 0 0
#2 98 32 [1374 147 | 9214 2509 (8200 3800 | 478 2607 | 3845 433 | 117 381 | 0 67 | 432 2065 | 0 2062
#3 694 304 | 314 430 | 18 1 130 123 |2766 1699 | 465 52 1 20 | 0 13[369 338 [0 2201
#4 512 388 66 139 3 2 2161 3052 31 1 100 318 0 148
#5 446 461 3 17 541 1778 7 0 10 59 0 4
#6 116 154 0 2 65 299 0 1
H#7 17 9 0 13
Tot.— [1883 1348 [1891 735 [10164 2510 [9105 3925 [6013 9448 [26366 486 [2526 401 | 0 80 [1021 2780 | O 4416

In case y is equivalent to p Noah discards all rules discovered so far that
contain y in their antecedent. This is because for each such a rule there will be
another rule containing p, in place of y, that provides the same information.

Experimental results based on large application datasets showed that such
pruning is very effective. This is because often databases need to be de-normalized
prior to be processed by rule induction algorithms and such de-normalization
creates many dependences among the terms in the databases.

We also tested this pruning strategy for ten datasets from the UCI repos-
itory using a minimum support of 1% and a dependency ratio of 90%. The
number of rules pruned for each dataset by both the minimum support and the
term-dependency pruning are summarized in Table 1. For each dataset (columns
“Vote,” “Heart,” “Ann,” etc. in Table 1) we report the number of rules pruned,
at each iteration, by minimum support (columns “ms”) and by term dependency
(columns “td”). The number of rules pruned by the minimum support are re-
ported just for comparison. For instance, for the “Vote” dataset, on the third
iteration (row “#3”), 694 rules are pruned by the minimum support versus 304
rules pruned by term dependency. The last row shows the total number of rules
pruned by each method.

Conversely to the “Confidence Upper Bound” earlier discussed, the term
dependency pruning produces some loss of information. In fact, we drop a rule
when its specialized version yields to a class distribution which is “close enough”
to the more general version of the rule. The minDepRatio is set by the user
according to the current application. This pruning can be easily switched off by
setting minDepRatio to 1.

5 Application of Data Mining for Cross-Selling

In this section, we discuss the use of Noah for a marketing cross-selling appli-
cation. In a cross selling activity, a company tries to sell additional products or
services to its current customers. A fundamental task for a successful cross-selling
activity is the accurate identification of the best prospects for a given product.
Since the company acts among current customers, it has already a considerable
amount of individual level data that may support such a task.



The Database. The database provided to us has a total of 41,400 records (num-
ber of customers) and 221 attributes. The total number of possible values of
all the attributes combined together is 53, 137. Furthermore, a large amount of
missing and/or noisy values are presented in the dataset. We split the dataset
into a training set of 27,703 tuples and a hold-out sample of 13,697 tuples. Al-
most all of the attributes are discrete; some of them have a large domain (e.g.,
“zip” and “city”).

5.1 Data Mining with Noah for the Cross-Selling Problem

The company we are studying offers a portfolio of five possible services to its
customers. We classified each customer either as “Single” (if he/she purchased
only one service) or “Multiple” (if he/she purchased more than one service). Our
goal is the accurate prediction of the correct class—“Multiple” or “Single”—
of each customer. From a managerial perspective, we need to pinpoint those
customers who are more inclined to have multiple services as they constitute the
target of the cross-selling. Differently from common prediction problems, not
only do we need to predict the class for each customer, we also need to associate
a confidence measure to each prediction. Such confidence measures allow us to
rank prospects in a gain chart form (discussed below) in order to target them
differently. For example, we may decide to call over the phone (an expensive
marketing process) prospects classified as “Multiple” with high confidence as
opposed to mail a standard flyer (a cheaper marketing process) to those predicted
as “Multiple” with low confidence. This allows the company to properly allocate
available resources to maximize its return from the marketing campaign.

To address this problem, we first ran Noah on the input training set. It
found a total of 4,135 rules—the training dataset was of 27,703 tuples, we set
minSupp = 0.5% and minConf = 0.75. We then classified each customer in the
hold-out sample by using the discovered rules. Notice that rules discovered by
Noah are not mutually exclusive, therefore, multiple rules can cover a specific
tuple during classification. We select the rule with the highest confidence in
this case. We then labelled each customer in the hold-out with the best class
suggested by the rule and the confidence of the rule.

Out of the entire hold-out sample, rules discovered by Noah covered a total of
6,224 customers (the rest are predicted by the most populated class, the default
rule, computed over the original distribution). We arranged Noah predictions
on a gain chart as follows: we created 10 (almost) equal-size clusters of hold-
out customers (i.e., quantiles of about 10%). Each cluster contains customers
whose prediction confidence falls within a specified range. In other words, we
fixed the confidence range for each cluster in the gain chart to accommodate
about 10% of the covered customers within that cluster. We then sorted those
clusters according to the confidence range in a descending order. Then, for each
cluster we computed the accuracy of our prediction for all customers belonging
to that cluster. The resulting gain chart is shown in Table 2. For instance, for
the cluster number 1, we set a confidence range of 0.850-1.000, the total num-
ber of customers whose associated prediction confidence falls in that range is



Table 2. The gain chart created using Noah

Cl. Rank]|Conf. range|Cl. Size|Hits|Accuracy|%Pop|%Covered
0.850-1.000] 646 [581] 89.94% [4.72%]| 10.38%
0.830-0.850 657 [538| 81.89% [4.80%| 10.56%
0.818-0.830| 679 |572| 84.24% [4.96%| 10.91%
0.805-0.818| 647 |531| 82.07% [4.72%| 10.40%
0.795-0.805| 642 |509| 79.28% [4.69%| 10.31%
0.788-0.795| 576 |454| 78.82% [4.21%| 9.25%
0.777-0.788] 601 [460] 76.54% [4.39%]| 9.66%
0.766-0.777| 656 [499] 76.07% [4.79%]| 10.54%
0.758-0.766| 592 431] 72.80% [4.32%| 9.51%
0.750-0.758| 528 [386| 73.11% [3.85%| 8.48%

S| 0| 00| | | o | of pof =

646 (column “Cl. Size”), of which 581 (column “Hits”) are correctly predicted.
This means an accuracy of 89.94% (column “Accuracy”). The column “%Pop”
contains the proportion of the number of customers in the cluster over the total
size of the hold-out sample (011'3653;6). Whereas “%Cover” is computed over the
total number of covered customers (%) As expected, the accuracy of each
cluster worsens as the confidence range goes down. Notice the anomaly of the
2nd cluster whose accuracy drops to 81.89%, which is worse than the 3rd and
4th cluster.

The overall results were deemed very satisfactory by marketing domain ex-
perts. As already mentioned, the actual utilization of such findings consists of
a set of different marketing strategies that are applied to the different clusters
depending on the cluster accuracy. Since we are working with current customers,
each of them can be precisely pinpointed (i.e., his/her phone number, address,
etc.).

5.2 Experimental Results using Other Mining Algorithms

We performed our experiments on a Linux OS with a 266 MHz Pentiun PC with
128 Mbytes of physical memory and 128 Mbytes of virtual memory. Our exper-
iments revealed that our application dataset is intractable for CN2*, Ripper®,
Apriori®, and CBA7 as all of them failed in their execution for lack of memory.

On the other hand, C4.5 was able to complete its task but the discovered
decision tree was very poor. We first tried C4.5 with the original dataset. C4.5
discovered a decision tree with 54,575 nodes which, after pruning, was reduced
to a single-node tree—that corresponds to always predict the most populated
class. After massaging the input training set, e.g., removing some many-valued
variables and/or converting others to different types, C4.5 was only able to
produce the two-level tree shown in Figure 6. Basically, C4.5 identified only
the variable “FirstService” which stores the first service (out of five available)

* Downloaded from http://wuw.cs.utexas.edu/users/pclark/software.html.
® To be requested at http://www.research.att.com/ wcohen/ripperd.html

5 Downloaded from http://fuzzy.cs.uni-magdeburg.de/ borgelt.

" Downloaded from http://www.comp.nus.edu.sg/~dm2.



Table 3. The results of applying C4.5 to the application dataset

[ Results from training set (27703 items) [[ Results from validation set (13697 items) |
Before Pruning After Pruning Before Pruning After Pruning
Tree Size] Error Tree Size] Error Tree Size] Error Tree Size] Error

58144 [3183 (11.5%) 6 [8747 (31.6%)|[ 58144 [5444 (39.7%) 6 [(4321) 31.5%

1 5
13
11 2
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Fig. 6: The tree generated from C4.5 from the application database

each customer subscribed to. The classification accuracy results of applying C4.5
are shown in Table 3. For the training set, the error before pruning is 11.5%
over 58,144 tree nodes; the error, after pruning, increased to 31.6% over only
six nodes. This is a symptom of the complexity of the input dataset whose
knowledge was initially captured by an over-fitted tree with a large number of
poorly populated leaves. This tree was then pruned down to a much smaller
tree with a much larger error. The over-fitting is also witnessed by the opposite
behavior on the validation set: the unpruned tree produces a larger error than
the pruned tree.

A gain chart (Table 4) can be drawn based on the output of C4.5. It can be
obtained by attaching to each predicted class the accuracy of the corresponding
leaf in the decision tree. Comparing Tables 2 and 4, we note that the output
from Noah is superior in many aspects to the one from C4.5. For instance, with
C4.5, we cannot partition customers in more than five clusters since that is the
total number of leaf nodes in the generated tree. Furthermore, we cannot create
the quantile representation of the gain chart, as we did with Noah. This reduces
the flexibility for cross-selling planning. Accuracy is in general higher for Noah.
Noah accuracy over the best 4,448 customers® is 82.24% (this is obtained by
averaging the accuracy of clusters 1 to 7). Whereas, the accuracy for the best
4,195 customers in C4.5 (i.e., the ones belonging to cluster 1) is 76.4%.

Comparison over the entire hold-out sample. In Table 2 we only reported the
customers who are covered by some good rule discovered by Noah (i.e., rules with
confidence greater than the minConf threshold set to 0.75). They are a total of
6,224 customers from the hold-out sample. The rest of them, i.e., 13697 —6224 =
7473, are predicted by low confidence rules and/or the default rule. In C4.5 there
is no concept of default rules as all the cases are classified by some leaf. Therefore,
for the sake of completeness, we now discuss the performance of C4.5 and Noah

8 By “best customer” here we mean a customer whose class we can accurately predict.



Table 4. The gain chart created using C4.5

Cl. Rank]|Leaf Conf.|[Cl. Size|Hits|[Accuracy| %Pop |[%Covered
1 0.76 4195 [3205] 76.40% [30.63%| 30.63%
2 0.74 1321 [972] 73.58% [9.64% | 9.64%
3 0.67 3069 [2055| 66.96% [22.41%| 22.41%
4 0.63 2656 [1681| 63.29% [19.39%| 19.39%
5 0.61 2456 [1463| 59.57% [17.93%| 17.93%

over the entire hold-out sample (i.e., 13,697 records). Noah performs slightly
better than C4.5 over the entire hold-out sample. In fact, C4.5 reports an error
of 4,321 cases (see Table 3) which yields an accuracy of 897132 — 68.4%
whereas Noah misclassifies a total of 4,040 cases which yields an accuracy of
% = 70.5%. It is important to note that the accuracy lower bound (or
baseline) of the dataset is 63.9%, that is, if we always guess “Multiple” (i.e., the
most populated class in the training set) we correctly predict 63.9% of the cases
in the hold-out sample (any useful classifier has to beat this value). Thus, the

percentage improvement over the baseline is W = 7% for C4.5 versus the
% = 10.3% of Noah.

For this specific application, an important contribution of Noah is the possi-
bility of creating the gain chart shown in Table 2 which properly supports the
cross-selling activity. Basically, with Noah we are able to locate those portions of
the dataset where an accurate prediction is possible, that is, where some robust
knowledge can be elicited. This matches with the cross-selling problem where
we do not need to target the entire population of customers. With Noah we are
able to predict (clusters of) customers with accuracy up to almost 90% (see Ta-
ble 2). C4.5 is far from that level and its outcome was considered of no interest
by domain experts.

In terms of learning time, C4.5 performs much faster than Noah. C4.5 took
about 8 minutes to complete its task? whereas Noah completed in about 4 hours.
The main reasons are: Noah performs a multivariate search for rules, it never
partitions the dataset and always keeps it as an external file.

6 Related Work

Both KDS [8, 6] and CBA [11] are very closely related to our work as they mine
classification rules in a Apriori [1] style. The focus of KDS is for the SQL imple-
mentation of the learning procedure. CBA provides a sophisticated classification
procedure. An extensive comparison of accuracy performance with C4.5 on a
set of UCI datasets is discussed in [11]. Both KDS and CBA do not treat the
problem of mining datasets with large number of attributes. Basically, Noah is
an extension of KDS to handle large number of many-valued attributes.
Bayardo et al. [3] discuss an extension of Apriori, called “Dense-Miner,”
to discover classification rules. They introduce the concept of “minimum im-
provement” that, basically, discards rules that provide only minor confidence

9 We used all standard parameters when running C4.5.



improvement (or just deterioration) over a more general version of the rule.
They also propose a pruning by “confidence upper bound,” similar to the one
we described. However, they use an “association form” for the classification rules:

p =y, where p is a pattern and y is a class term. Their definition of rule confi-

dence is ¢ = 3wep(PYiy})
supp(p) '
the proposed solutions are different.

Our “term dependency” pruning resembles closely the “(near) equivalence”
strategy proposed by Bayardo [2]. However, in Noah we extended it with the
concept of “equivalence” between terms.

Lent et al. [10] also propose a classifier based on Apriori-like association
rules. They propose an algorithm to cluster similar association rules into a more
descriptive rule. They however limit their approach to only two terms in the rule
antecedent.

SLIQ [13], SPRINT [16], and MIND [17] induce classification trees from
databases residing on disk. They are based on the univariate and divide-and-
conquer principles of C4.5 discussed earlier. Thus, they will exhibit similar draw-
backs as of C4.5.

which is different from the one used in Noah, therefore

7 Conclusions

In this paper we presented an algorithm to mine classification rules from datasets
with a large number of many-valued attributes. In such datasets knowledge may
be scattered among many uncorrelated rectangular portions of the input dataset.
The univariate and divide-and-conquer approach of C4.5 may fail in discovering
knowledge under such circumstances. We presented an algorithm, Noah, that
discovers classification rules by following a multivariate approach. The combina-
torial explosion related to the multivariate search is controlled by optimized data
structures and efficient pruning strategies. These strategies are quite general and
may be exploited by other learning algorithms as well. We have successfully ap-
plied Noah to a real application of cross-selling marketing based on a dataset of
41,400 records and 221 attributes. C4.5 failed in discovering useful knowledge
from this dataset. Applying the same dataset on other rule discovery algorithms,
such as CN2, Ripper, Apriori, and CBA, failed due to a lack of memory. Our
future work agenda includes an improved classification procedure and the appli-
cation of Noah to other large dataset domains. Noah does not require the dataset
to reside in main memory during learning. This provides a basics for a tighter
integration of Noah with DBMS which is currently under study.
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