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Abstract
We propose an indexing technique for fast retrieval of
s� imilar s ubsequences us ing t ime w arping di stances. A
time wa� rping d istance is a  mo re suitable similarity
meas� ure t han t he Eucl idean di stance in many
a� pplications, where sequences may be of different lengths
o� r different sampling rates. Our indexing technique uses a
dis
�

k-based suffix tree as  an index s tructure and employs
low
�

er-bound distance functions to filter  out dis similar
s� ubsequences without false dismissals. To make t he index
s� tructure compact and thus  acceler ate the query
pr	 ocessing, we convert sequences of continuous values to
s� equences of  discrete values via a categorization method
and s� tore only a s ubset of suffixes whose first values are
d
�

ifferent from their p receding va lues. Th e exp erimental
results reveal that our proposed technique can be a few
or� ders of magnitude faster than sequential scanning.

1. Introduction

Sim



ilarity searches in sequence databases are important
in 
�

many application d omains, such as inf ormation
r� etrieval, d ata m ining, a nd c lustering. D etecting stocks
that have sim



ilar gro wth p atterns and f inding p atients
w� hose lung lesions have similar evolution characteristics
are a f� ew ex amples of  sim ilarity qu eries. Although
sequ� ential scanning can be used to answer these queries, it
m� ay require an en ormous processing tim e ov er large
sequ� ence databases. Recently, several indexing techniques
[1,5,10,22] have been proposed to speed up the
p� rocessing of similarity queries.

Most of the previous techniques [1,10,22] for similarity
search� es use the Euclidean distance metric as a similarity
measure. However, in many applications, the sampling
rates and the lengths of sequences may be different,
m� aking it d ifficult o r im possible to use the Euclidean
distan
�

ce as a similarity measure. In th e area of speech

recognition [15], this problem has been approached using
a sim� ilarity m easure, called a tim e w arping distance
[3,15], which allows sequences to be stretched or
com� pressed along the time axis. Under time warping, any
elem� ent of  a sequence can be matched to one or more
neighboring elements of another sequence. As an example
[16], let us consider two sequences, S1 =
<20,20,21,21,20,20,23,23> an� d S 2 = <20,21,20,23>
w� here the sequence S1 is the closing price of a stock taken
ev� ery day and S2

�  is the closing price of another stock
ta



ken every o ther d ay. S 1 and S2 cannot be compared
directly
�

 because the sequence S1 is longer than S2� . The
Eu
�

clidean distance between S2 and any subsequence of
le
�

ngth four o f S1 is greater than 1.41. However, if we
du
�

plicate every element of S2
�  using time warping, we find

th



at the two sequences are identical.
In the matching of similar sequences, it is important to

prev� ent th e occurrence of fa
�

lse d ismissals [1].�  A false
dism
�

issal occurs when a sequence similar to a qu ery
sequ� ence is n ot in cluded in  th e answer set. Indexing
tech



niques that assume th e tr� iangular inequality  may
produ� ce false dismissals when the distance function not
sa� tisfying the tr iangular inequality is used as a similarity
m� easure [22].  Un fortunately, a time warping distance
d
�
oes not satisfy the tr iangular inequality, w hich can b e

s� imply proved by a counter example [22]. This property
m� akes spatial access methods b ased o n the tr iangular
inequality unsuitable for similarity searches with a time
w� arping distance.

In the area of string matching, a suffix tree [17] has
been
�

 extensively used as an in dex structure to find the
sub� strings that are exactly m atched to  the given q uery
s� tring. A suffix tree may be a good candidate for an index
stru� cture with a time warping distance because it does not
assu� me an y g eometry or an y u nderlying distan ce
functions. However, for a suffix tree to be used as an
in
�

dex structure f or sim ilarity searches, the f ollowing
probl� ems h ave t o be addres sed: 1) A  suffix tree is
d
�
esigned to f ind the exactly matched substrings. Its exact

search�  algorithm needs to be extended to f ind similarly
matched subsequences. 2) In general, a suffix tree is built
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f
�
rom sequences whose elements take th e v alues f rom

f
�
inite alphabets. However, sequences we consider in this

paper � are comprised of  elem ents of  con tinuous real
values. � A systematic method to  co nvert co ntinuous
elem� ent values to discrete values is required.

In this paper we propose a new indexing technique for
the f



ast retrieval o f sim ilar subsequences of d ifferent
lengths or different sampling rates. Our technique uses a
tim



e warping distance as a similarity measure and a disk-
based 
�

suffix tree as an index structure. To make the index
stru� cture compact, we convert sequences of continuous
v� alues to sequences of discrete values via a categorization
method and store only a subset of suffixes whose first
v� alues are dif ferent f rom th eir im mediately preceding
v� alues. When the query sequence, Q, is given, a suffix tree
is traversed and time warping distances between Q and
su� bsequences contained in  a su ffix tree are computed.
B
�

ecause subsequences contained in  a suffix tree are of
discrete v
�

alues, their exact distances from Q cannot be
obtain ed. In stead, lower-bound distance functions are
em� ployed to estimate the exact distance; so our proposed
te



chnique guarantees no false dismissals.
T
!

his paper is organized as f ollows. In Section 2 w e
prov� ide a brief overview of the related work on sequence
m� atching problems. In Section 3, we give the definition
an� d the property of  a tim e warping distance. Section 4
introduces the construction method and the similarity
search�  algorithm of a disk-based suffix tree. We apply the
ideas of a categorization and a sparse suffix tree in
Section



 5 an d Section 6, respectiv ely. Ex perimental
results are given in Sectio� n 7.

2. Related w
"

ork

Several ap



proaches f or f ast retrieval o f similar
s� equences have recently been proposed. In [1], sequences
are con� verted into the f requency domain by a Discrete
Fourier Transform and are subsequently mapped into
m� ulti-dimensional points that are managed by an R∗-tree;
this techniq



ue w as extend ed to  lo cate similar
su� bsequences [10]. Since the approaches of [1,10] use the
Eu
�

clidean distance metric as a sim ilarity m easure,
se� quences of different lengths or different sampling rates
c� annot be matched.

Seq



uence matching that allo ws transf ormations is
propos� ed in [11,16]. In [11], sequences are grouped into
equ� ivalent classes according to th eir n ormal f orms.
Though normal forms are invariant to shape-based
transf



ormations such as scaling and shifting, they do not
h
#
andle the compressions or the stretches of element values

al� ong the time axis. The authors of [16] propose a class of
tr



ansformations that can be used in a  query language to
exp� ress similarity w ith an R- tree index. They handle
moving average and global time scaling, but not time

w� arping.
T
!

he access m ethods of  [5,14,21,22] perm it the
m� atching of sequences of different lengths. [5] presents a
modified version of an edit distance, considering two
sequ� ences matching if  a majority of elements match. This
techniq



ue is extend ed to  the m atching o f m ulti-
d
�
imensional sequences in [2 1]. In [2 2], a tim e warping

distan
�

ce is used as a similarity measure with a two-step
filtering process: a FastMap index f ilter proceeded by a
lo
�

wer-bound d istance f ilter. T he underlying index
str� uctures of [5,21,22] a re b ased o n the  tr iangular
inequality. The authors of [14] introduce an aligned
su� bsequence matching with a tim e w arping distance.
W
$

hereas their approaches are u seful f or lon g data
sequ� ences, subsequences not starting or ending at segment
b
�
oundaries cannot be found.

S



imilarity matching based on shapes of  sequences i s
propos� ed in [2,19]. [2] dem onstrates a s hape definition
la
�

nguage (SDL) a nd p rovides a n ind ex str ucture fo r
speedin� g up the execution of  SDL queries. In [19], th e
autho� rs introduce the notion of generalized approximate
qu% eries that specify the general shapes of data histories.
W
$

hereas both approaches may h andle the variations of
elem� ent values on the time axis, they cannot be used for
application� s that care about specific element values.

T
!

here are also several approaches for m atching of
bi
�

ological sequences. [4] proposes t o u se a di sk-based
su� ffix tree f or solving the sequence alignment problem,
an� d [20] addresses the problem of discovering patterns in
p� rotein databases with the similarity measure of a string
edit distan� ce. W hile w e f ocus on  th e sequences of
con� tinuous n umeric v alues, the approaches of  [4,20]
cen� ter on the sequences of characters. Furthermore, the
al� gorithm of [20] u ses a main-memory based suffix tree,
m� aking it infeasible for a large sequence set.

3. Tim
&

e warping distance

In
'

 general, finding a similarity measure for sequences
is not easy because sequences that are qualitatively the
sam� e may be quantitatively different. First, the sequences
may be of different lengths, making it difficult or
impossible to embed the sequences in a metric space and
use the Euclid( ean d istance to d etermine similarity.
Secon



d, the sampling rates of sequences may be different:
on e sequence may be sampled every minute while another
sequ� ence is sampled every other minute. Such differences
in rates make similarity measures such as cross-correlation
unusa( ble.

In this paper, we use a time warping (TW) similarity
measure [3,15] that allows sequences to be stretched or
com� pressed along the time axis. TW is a generalization of
classical alg� orithms f or comparing discrete sequences to
sequ� ences of continuous values, and is used extensively in
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m� atching of  v oice, au dio an d medical signals
(electrocardiog
*

rams). T o f ind th e m inimum dif ference
betw
�

een tw o sequences, TW m aps each element of a
sequ� ence to one or more neighboring elements of another
seq� uence. Let us now give the f ormal definition [15] of
th



e time warping distance.

Definition 1. Given any two non-null sequences, Si
+  and Sj

, ,-
th



e time warping distance, Dtw
. (), is d
*

efined as follows :

  Dtw
. (S
*

i, S- j
, [2:-])

D
/

tw
. (S
*

i, S- j
, ) = D
0

base
1 (S

*
i[1], Sj

, [1]) + min   Dtw
. (S
*

i[2:-], Sj
, )0

  Dtw
. (S
*

i
+ [2:-], Sj

, [2:-])
D
/

base
1 (a, b) = |

*
 a – b |  2

In ab
'

ove definition, Si
+ [p] represents the pth

.
 element of

S



i and Si[p:q] denotes the subsequence of Si including
e� lements in positions p through q. W e use the notation
S



i[p:-] for the suffix of Si starting from the pth
.
 element.

That is, Si
+ [p:-] is identical to Si

+ [p:|Si
+ |3 ] w here |Si

+ |3  is the
le
�

ngth of S i. Dbase
1 () on

*
 tw o numeric values can be any

d
�
istance function, but we assume that it is defined as the

city� -block distance. Dtw
. (S
*

i
+ ,S- j
, ) can
0

 be calculated efficiently
u( sing a dynamic programming technique [3] based on the
recurrence relation γ4 tw

. (x
*

, y).

Definition 2. Given any two non-null sequences, Si and Sj
, ,-

th



e recurrence relation γ4 tw
. (x
*

, y) (x=1,2,…,|Si
+ |3 ,  y =1,2,…,

|S
3

j
, |3 ) that builds the cumulative time warping distance table

for Si
+  and Sj

,  is defined as follows:
γ4 tw
. (x
*

, y−1)
γ4 tw
. (x
*

, y) = Dbase
1 (S

*
i[x], Sj

, [y]) + min γ4 tw
. (x
*

−1, y)
γ4 tw
. (x
*

−1, y−1)5
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Figure 1. Time warping distance for S3 = <3,4,3
7

>
and S8

4 = <9 4,5,6,7,6,6
:

>;

T
!

he dynamic programming algorithm [3 ] f ills in the
table of



 cumulative distances as the computation proceeds.
This computation has complexity O(|Si

+ ||S3 j
, |)3 . T he final

cu� mulative distance, γ4 tw
. (|
*
Si|,
3
|Sj
, |)3 , i s the minimum distance

betw
�

een Si and Sj
, , an- d the matching of  elements can be

traced back



ward in  th e table by choosing th e previous
cells � with the lowest cumulative distance. Figure 1 shows
th



e cumulative distance table f or tw o sequences, S3
)  =

<3,4,3> an� d S 4
<  = <4,5,6,7,6,6> and the mapping of

elem� ents that generates the minimum distance.
B
�

y reading th e last colu mn of  each row  of  th e
cu� mulative distance table, we get the distance between Si

+
an� d any prefix of Sj

, .  That is, the distance between Si and
S



j
, [1:q] (q=1,2,…,|Sj

, |3 ) is obtained from the last column of
the q

 th 

.
row� . In the above example, Dtw

. (S
*

3
) , S- 4[1:4]) is 8, as

seen � in the last column of the row 4. Thus, determination
as to w� hether the time warping distance of two sequences
is g
�

reater than a distance-threshold ε=  does not require
bu
�

ilding the entire cumulative distance table, as proven by
the f



ollowing theorem.

Theorem 1. If  all columns of the last row of the
cu� mulative distance table h ave v alues greater than a
di
�

stance-threshold ε= , addi- ng more rows on this table does
not yield the new values less than or equal to ε= .
Proof. The proof is given in [13]. >

Let us look at the table shown in Figure 1. If ε=  is 3,
af� ter inspecting the row 3, we can d etermine that the
distan
�

ce between S3
)  and S4

<  is greater than ε=  because all
colu� mns of the row 3 h ave v alues g reater than 3.
T
!

herefore, we do not have to fill the remaining three rows.
In subsequent sections, we use Theorem 1 to reduce the
search�  space of an index structure.

4. Similarity search using a suffix tree

In this section, we propose to use a suffix tree (ST) as
an�  in dex structure f or sim ilarity searches with a time
w� arping di stance. Bef ore describing t he m ethods f or
con� structing and searching a suffix tree, we present the
d
�
efinition and the internal structure of a suffix tree.

 A trie is an indexing structure used for indexing sets of
key
?

words o f varying sizes. A suf fix trie [17] is a trie
w� hose set of keywords comprises the suffixes of a single
sequ� ence. Nodes with a sin gle outgoing edge can be
collapsed, � yielding the structure known as the suffix tree
[17]. A suffix tree is generalized [4,20] to allow multiple
sequ� ences to be stored in the same tree. Each suffix of a
sequ� ence is represented by a leaf  node. Precisely, the
suffi� x St

. [p:-] is expressed by a leaf node labeled with (t,p).
T
!

he edges are labeled with subsequences such th at the
con� catenation of the edge labels on the path from the root
to th



e leaf (t,p) becomes St
. [p:-]. The concatenation of the

ed� ge labels on the path from the root to the internal node,
N
@

i
+ , - represents the longest common prefix of  the suffixes

represen� ted by th e leaf n odes under N i. We use the



noA tation label(N i,N- j
, ) f
0

or th e concatenated labels on th e
pat� h f rom N i to Nj

, . Figure 2 shows the suffix tree
con� structed f rom two sequences, S5

B  = <4,5,6,7,6,6> and
S



6
C  = <4,6,7,8>, where ‘$’  is used as an end marker of a

suffi� x.
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D
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6 7 8
$

$ 6

$

7 6
D

6
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$

8
$

(5,1) (6,1)
(5,2) (5,6) (5,5)

(5,3) (6,2)

(5,4) (6,3)

(6,4)

Figure 2. Suffix tree from S5=<4,5,6,7,6,6> and
S
F

6=<4,6,7,8>

4.1. Index construction

A suffix tree for multiple sequences can be constructed
by
�

 adding a special sequence separator symbol to the
alph� abet. The sequences to be included in th e tree are
con� catenated, separated from each other by this separator
sy� mbol. Then, the ordinary suffix tree algorithm is applied
to th



e concatenated sequence. The suffix tree created
using ( this process has to be kept in main memory during
co� nstruction. Therefore, this approach is not realistic to a
large sequence set.

T
!

o remedy the problem, we use an incremental disk-
bas
�

ed suffix t ree construction m ethod proposed in [4].
Two suffix trees, representing two disjoint sets of
sequ� ences, are merged to produce a single suffix tree by
pre-� order traversal of both suffix trees and combining the
pat� hs corresponding t o common subsequences. A suffix
tree 



for a large set of sequences can be constructed by
perf� orming a series of bi nary merges of  suffix t rees of
in
�

creasing size. The merge operation of  two suffix trees
can�  support di sk-based representations i n l imited main
memory.

T
!

wo suffix t rees fo r S i 
+ an� d S j

,  are merged with
co� mplexity O(| Si|+

3
|Sj
, |3 ), hence th e su ffix tree f or M

seq� uences is constructed with complexity O(M L
G

) w
0

here
L  is the average length of M sequences. The total number
of  nodes in a suffix tree is constrained due to two factors:
1) there are O(ML

G
) leaf
0

 nodes and 2) the degree of any
in
�

ternal node is at least 2. T herefore, the m aximum

nA umber of n odes and overall space requirement of  the
suf� fix tree is linear in ML

G
 [17].

4.2. Search algorithm: SimSearch-ST

A
H

 suffix tree (ST) is a useful index structure to locate
su� bsequences th at are ex actly m atched to a query
sequ� ence Q. To f ind exactly matched subsequences, Q is
trav



ersed from the root of  th e tree an d trav ersal is
term



inated when the end of  Q is reached or a node is
reach� ed beyond w hich f urther traversal is not possible.
Exact searches are performed in O(|Q|). Even though the
ex� act matching algorithm of  a suffix tree is simple and
f
�
ast, it cannot be directly applied to the problem we are

goI ing to solve in this paper.

Prob
J

lem Defin ition: Given M sequences S1,S- 2,…,S- M of
arbitrary�  lengths, a query sequence Q and a u ser-given
di
�

stance-threshold ε= , f- ind the subsequences Si[p:q] (i =
1,2,…,M) whose time warping distances from Q are less
than o



r equal to ε= . K

Ou
L

r proposed similarity search algorithm SimSear
M

ch-
ST
M

 is given in Algorithm 1. The search starts from the
root � of a suffix tree and continues the depth-first traversal
until all sub( sequences whose time warping distances are
less than or equal to ε=  are found.

Algorithm 1. SimSearch-ST

T
!

he actual filtering process is executed in Filter-ST
sho� wn in Algorithm 2. When Filter-ST visits a node N, it
in
�

spects each child node CNi to find a new answer and to
determ
�

ine whether further depth traversal is needed or not.
For sim
N

pler explanation, we assume that the edge between
t


wo nodes, N and CNi

+ , is lab- eled with a single value.
T
!

o f ind a new answer, Filter-ST b
�
uilds a cumulative

distan
�

ce table for Q and label(N, CNi
+ ). If0

 N is a root node,
the tab



le is built f rom the bottom. Otherwise, the table is
con� structed by augmenting a new row on the table T that
h
#
as been accumulated from the root to N. The function

A
H

ddRow(T, Q, l abel(N, CNi), D
0

tw
. ()) bu
*

ilds a n ew
cu� mulative distance table, u sing the distance function
D
/

tw
. (
*
), by augmenting a new row corresponding to label(N,

CN
O

i
+ ) on
0

 T . Suppose that t he rth
.
 row is the newly added

ro� w. If  the last column of the r th
.
 row has the value less

Input   : RP oot Node R, Q, εQ
Output : answerSet

cumDistTable ←R  NULL;
answerSet  ←R  Filter-ST (R, Q, εQ , cumDistTable);

return answerSet;



than o



r equal to ε= , lab- el(GetRoot(CNi), C
0

Ni)) is
0

 inserted
into
�

 the answer set.
To determine if further depth traversal is needed,

Filter-ST uses Theorem 1. If at least one column of the rth
.

row�  has a value not greater than ε= , th- e search continues
dow
�

n the tree to find more answers. Otherwise, the search
moves to the next child of N.

Algor
S

ithm 2. Filter-ST

4.3. Algorithm analysis
T

 Before analyzing the complexity of SimSear
U

ch-ST,-
let us examine the complexity of sequential scanning.
Sequ



ential scanning reads each sequence and builds as
m� any cumulative distance tables as the number of suffixes
con� tained in the sequence. The complexity of  building a
cu� mulative distance table for the query sequence Q and
the



 suffix of length L is O(L|Q|). For M sequences whose
av� erage length is L , th- ere are M L  suffixes and their
av� erage length is (L+1)/2. TV herefore, the complexity of

seq� uential scanning is O(M
2

L |Q
3

|).
SimSear
U

ch-ST is computationally less expensive than
sequ� ential scanning du e to bran ch-pruning (based on
T
!

heorem 1) and sharing cumulative distance tables for all
su� ffixes that have common prefixes. Thus, the complexity

of  SimSear
U

ch-ST is O(
pW d

X
2

RR
|Q

Y
|L  M ), w

0
here Rd

Z  (≥1) is the

redu� ction f actor due to sharing the cumulative distance
tables, an



d Rp[  (≥1) is the reduction factor gained from the
b
�
ranch-pruning. Rd

Z  grows as the length and the number of
com� mon prefixes of the suffixes contained in a suffix tree
inc
�

rease. G iven k suffixe s, α\ 1,- α\ 2,…,- α\ k, w- hose f irst t
elem� ents are the same, the construction of  k  cumulative
distan
�

ce tables requires the computation of |Q||α\ 1| +
3

 |Q||α\ 2
� |3

+V  … +|Q||α\ k|
3
 cells. Ho wever, it is red uced to t|Q| +

|Q
3

|(|α\ 1|
3
−t


) +  |Q|(|α\ 2

� |3 −t


) +  …+|Q|(|α\ k

] |3 −t) if



 the cumulative

distan
�

ce table for Q and the common prefix of length t is
sh� ared by k suffixes. In this case, Rd

Z  can be expressed as
Rd
Z  = (|α\ 1|+

3
|α\ 2
� |3 +…+|α\ k

] |3 ) / ((|α\ 1|+
3

|α\ 2
� |3 +…+|α\ k

] |)3  – t(k−1)).
W
$

hile Rd
Z  is determined by the distribution of element

va� lues, Rp[  is decided by the number of answers required
by
�

 a user. That is, Rp[  increases as the distance-threshold ε=
decreases. If
�

 ε=  is so small that just one or two
s� ubsequences may be answers, only the topmost part of a
s� uffix tree may be visited during the query processing. In
an� other ex treme case where ε=  is large enough for all
su� bsequences to be answers, all nodes of a suffix tree need
to



 be visited, thus making Rp[  = 1. In the worst case where
th



ere is no common subsequence and the branch-pruning
c� annot help, both values of Rd

Z  and Rp[  are 1, and therefore
the co



mplexity of SimSear
U

ch-ST becomes the same as
that o



f sequential scanning.

5. Similarity search using categorization

In 
'

this sectio n w e intro duce the co ncept o f
categ� orization to decrease the n umber of  v alues that
elem� ents can take and thus increase the length and the
nA umber of common subsequences. As explained in the
p� revious section, if the length and the number of common
su� bsequences increase, the in dex size an d th e qu ery
processin� g time are reduced. T o g et th e categorized
representations of element values, we first generate the set
of  categories and determine their ranges. Then, we convert
ev� ery element value to the symbol of the corresponding
categ� ory. For example, given two categories C1 = [0.1,3.9]
an� d C 2

�  = [4.0,10.0], S7^  = <5.27, 2.56, 3.85> is
t


ransformed to CS7

^  = <C2
� , C- 1, C- 1> w_ here CS7

^  denotes the
con� verted sequence of S7

^ . Thus, sequences of continuous
v� alues are converted to sequences of discrete symbols.

5.1. Categoriz
`

ation method

In this work, the following two categorization methods
have been chosen and experimented for their simple
im
�

plementations, albeit oth er categorization approaches
like the type abstraction hierarchy (TAH) [6] and the k-
means algorithm may also be used to categorize element
va� lues.

The first method is an equal-length categorization. As
the nam



e im plies, all the categories have equal interval
length (MA
�

X-MIN) / c. Here, MIN is the smallest element
value f� ound in the set of sequences, MAX is the largest
elem� ent value found in the set of sequences, and c is the
number of categories given as the input parameter to the
categ� orization algorithm. This categorization approach is
sim� ple and f ast, but lo ses information about value and
frequency distributions of the sequences.

Input   : Node N, Q,  εa , Cumulative Distance Table T
Out
b

put : answerSet

anc swerSet ←d  {};
CN  ←d  GetChildren(N)

for i ←d  1 to
e

 |CN| do
f

 {
     CTi

g  ←d  AddRow(T, Q, label(N,CNi
g ), Dh

tw
i ());

     Let dis
j

t be the last column value of the new row;
     Let mDistk  be the minimum column value of the new row;
     if dis

j
t ≤ εa , insert label(GetRoot(CNi

g ),Ni
g ) into answerSet;

     if mDistk  ≤l  εa ,
         answerSet ←d  answerSet ∪m  Filter-ST(CNi

g , Q, n εa , CTi
g );

}

return answerSet;



T
!

he secon d m ethod is a maximum-entropy
categ� orization. T he entropy [18] of  a categorization is

def
�

ined as ∑ =
−=

co
1i 

i
p

i
p )

q
 logP(C )

q
 P(CH(C)  where P(Ci

+ ) is
0

the p



robability  that an elem ent is includ ed in the i th
.

catego� ry. To minimize the loss of inf ormation about the
sequ� ences, this categ orization m ethod decides th e
categ� ory boundaries that generate the maximum entropy
v� alue. The boundaries can be determined easily by making
all � categories include the same number of elements (P(C1)

0
= P(C2) = … = P

0
(Ccr )).

0
It is not easy to determine the number of categories:

too m



any categories do not h elp m uch to increase the
number of common subsequences, but likewise, too few
categ� ories do n ot h elp m uch to redu ce the query
p� rocessing time because of the decreased filtering rate of
the ind



ex. A simple strategy is to do many experiments on
t


he set of  sequences and determine the best number of
c� ategories using the cost function Wt

. CO t
.  + Wss C

O
ss . Here, Ct

.
an� d Css  are costs for processing the query and storing the
in
�

dex, respectively, an d W t 
. an� d W ss  are their relative

w� eights. T he d etermination o f these w eights is
ap� plication-dependent.

5.2. Index
`

 construction

After converting element values into discrete symbols,
w� e build a suffix tree from the set of converted sequences.
W
$

e denote the resultant tree STC
t . STC

t  is constructed using
the



 same construction a lgorithm used fo r a n o rdinary
suffi� x tree.

5.3. A modif
`

ied distance function: Dtw
u

-lb()

W
$

hereas the edges of a su ffix tree are labeled with
nA umeric values, the edges of STC

t  are labeled with discrete
sy� mbols. As a result, th e exact time warping distance
betw
�

een a query sequence of n umeric v alues and any
su� bsequence contained in  ST C

t  cannot be computed.
T
!

herefore, we introduce the new distance function Dtw-lb
. ().

*

Definition 3. G
v

iven two non-null sequences, Si
+  and Sj

, , th- e
distan
�

ce function D tw-lb
. (S

*
i, C- Sj

, ) that returns the lo
0

wer-
bou
�

nd distance of Dtw
. (S
*

i, S- j
, ) is d
0

efined as follows:

    Dtw
i (Si

g ,CSj
w [2:-])

Dtw
i

-lb(S
x

i,CSn j
w ) = D

y
ba
z

se-lb(Si[1],CSj
w [1]) +{  min     Dtw

i (Si[2:-],CSj
w )

    Dtw
i (Si

g [2:-],CSj
w [2:-])

 0 (if  B.lb ≤l  a ≤l  B.ub)
Dba
z

se-lb(a, B) =       a –
x

 B.ub (if  a > B.ub)
 B.lb – a (if  a <|  B.lb)

 w� here ‘a’  is the numeric value corresponding to Si[1] and

‘B’  is the category symbol corresponding to CSj
, [1]. }

In the d
'

efinition of D base-lb
1 (), B

*
.lb and B .ub are th e

minimum and the maximum element values, respectively,
f
�
ound in the category B. As shown in Figure 3, Dbase-lb

1 (a,
*

B) returns the possible minimum distance between a and
B.
�

B.ub

B.lb

B.ub

B.lb

B.ub

B.lb

~
 a

~
 a

~
 a

possible minimum distance
= 0

possible minimum distance

= a – B.ub

possible minimum distance
= B.lb – a

Figure 3. Minimum distance between a and B

To prevent false dismissals, the distance returned from
D
/

tw-lb
. (S

*
i, C- Sj

, ) sho
0

uld always be less than or equal to the
distan
�

ce computed by D tw
. (S
*

i
+ , S- j

, ). T
0

heorem 2 states this
f
�
act.

T
�

heorem 2. For an
N

y two non-null sequences, Si and Sj
, ,-

the f



ollowing inequality holds.
D
/

tw-lb
. (S

*
i, C- Sj

, ) 0 ≤�  Dtw
. (S
*

i, S- j
, )0

Proof. 
J

T
!

he proof is given in [13].  �

5.4. Search algorithm: 
`

SimSearch-STC
�

Algor
�

ithm 3. SimSearch-STC

The algorithm SimSear
U

ch-ST needs to be modified to
ref� lect the categorized representation of  element v alues.
Ou
L

r proposed search algorithm SimSear
U

ch-STC is shown
in
�

 Algorithm 3. Note that element v alues of a qu ery
sequ� ence are not converted to discrete symbols.

T
!

o f ind th e candidate subsequences whose lower-

     

Input   : Root Node R, Q, εa
Output : answerSet

cumDistTable ←d  NULL;
candidateSet ←d  answerSet ←d   {};

candidateSet  ←d  Filter-STC
�  (R, Q, εa , cumDistTable);

answerSet ←d  PostProcess(candidateSet, Q, εa )h

return answerSet;



bou
�

nd distances to the query sequence Q are w ithin ε= ,-
Filter-STC is called recursively. Filter-STC is the same as
Filter-ST except that the former uses Dtw-lb

. () to
*

 build the
cum� ulative distance table while the latter uses Dtw

. (). S
*

ince
the lo



wer-bound d istance is used  f or f iltering, the
su� bsequences whose exact time w arping distances are
larger than 
�

ε=  may be included in the candidate answer set.
These subsequences are called fa

�
lse a larms. For each

an� swer con tained in  th e can didate answer set, the
algo� rithm PostProcess retrieves the actual subsequences
an� d computes their exact time warping distances. Finally,
th



e subsequences whose actual time warping distances are
not larger than ε=  are returned as answers. Algorithms
Filter-STC and PostProcess are omitted due to space
lim
�

itations.

5.5. Algorithm analysis
`

 The complexity of SimSear
U

ch-STC is represented as

O(
L

|Q
�

|L n
R R

|Q
�

|L  M
p�d

�
2
�

+ ) w
0

here n  is th e number of

su� bsequences requiring the post-processing. Hence, the
lef
�

t expression represents the time f or f iltering and the
right expression represents the time for post-processing.
C
O

ompared to SimSear
U

ch-ST, - SimSear
U

ch-STC has
perf� ormance improvements due to a larger value of Rd

Z ,-
d
�
espite the extra time for post-processing

6. Similarity search using a sparse suffix tree

A
H

 suffix tree that stores only a subset of suffixes is
called � a sparse suffix tree [12]. Since the size of a suffix
tree 



is linear in the number of leaves, a sparse suffix tree
is sm
�

aller than an original suffix tree. Suffixes inserted
into a tree are called stored suffixes� ,-  and suffixes no t
inserted into a tree are called non-s� tored s uffixes. T he
redu� ction of  t he index size by storing only a subset of
su� ffixes is measured by th� e compaction ratio r (0 ≤ r < 1)
tha



t is defined as r = (the number of non-stored suffixes) /
(t
*

he number of suffixes). In this section, we propose to use
a sparse su� ffix tree to f urther reduce the index size and
accelerate th� e query processing.

6.1. Index
�

 construction

Sim



ilar to STC
t , a sp- arse suffix tree is built f rom the set

of  categorized sequences. However, unlike STC
t , on- ly

suffi� xes w hose fi rst va lues a re different from their
im
�

mediately preceding values are stored in a sparse suffix
tree. T



hat is, the suffix CSj
, [p:-] is stored only if CSj

, [p] ≠�
CS
O

j
, [p−1]. For example, for CS8

�  = <C1,C- 1,C- 1,C- 3
) ,C- 2

� ,C- 2
� >,_

o nly the three suffixes (CS8
� [1:-], CS8

� [4:-], and CS8
� [5:-])

are stored in�  a sparse suffix tree. We denote the resultant
tree SST



C
t .

6.2. A modif
�

ied distance function: Dtw
u

-lb2()

S



uppose that we have the cumulative distance table for
S



i and CSj
,  where Si and CSj

,  are located along the x-axis
an� d the y-axis, respectively. While we can get the distance
betw
�

een S i and any p	 refix of CSj
,  by reading the last

colu� mn of each row, there is no direct way to compute the
distan
�

ce between S i and any su� ffix of CSj 
, ex� cept by

b
�
uilding a new table. However, if the first N elements of

CS
O

j
,  have the same value, we can obtain the lower-bound

distan
�

ce of D tw-lb
. (S

*
i, C- Sj

, [p:-]) (p=2,3,…,N) using a new
distan
�

ce function, Dtw-lb2
. (S

*
i
+ , C- Sj

, [p:-]).

Defin
�

ition 4. For an
N

y two non-null sequences, Si and CSj
, ,-

if  the first N elements of CSj
,  have the same value, then the

distan
�

ce f unction D tw-lb2
. (S

*
i, C- Sj

, [p:-]) (p=2,3,…,N) that
retu� rns the lower-bound distance of D tw-lb

. (S
*

i, C- Sj
, [p:-]) is

def
�

ined as follows:

D
y

tw
i

-lb2(Si,CSj
w [p:-]) = Dtw

i
-lb(Si,CSj

w )h  – (p–1) ∗ Dba
z

se-lb(S
x

i[1],CSj
w [1])�

 If we know the value of Dtw-lb
. (S

*
i,C- Sj

, ), th0
en D tw-lb2

. (S
*

i,-
CS
O

j
, [p:-]) can be computed with complexity O(1). The

distan
�

ce returned from Dtw-lb2
. (S

*
i,C- Sj

, [p:-]) is always less
than 



or equal to Dtw-lb
. (S

*
i
+ , C- Sj

, [p:-]). The following theorem
states th� is fact.

Theorem 3. For any two non-null sequences, Si+  and Sj
, , if-

th



e first N elements of CSj 
, have the sam
#

e value, then the
following inequality holds for p = 2,3,...N:

D
/

tw-lb2
. (S

*
i,C- Sj

, [p:-]) ≤ Dtw-lb
. (S

*
i,C- Sj

, [p:-]) ≤ Dtw
. (S
*

i,S- j
, [p:-])

Proof. 
J

T
!

he proof is given in [13]. �

6.3. Search algorithm: 
�

SimSearch-SSTC
�

The algorithm SimSear
U

ch-STC needs to be modified
to ref



lect the fact that there are some suffixes not stored in
the ind



ex. If  SimSear
U

ch-STC is applied to a SSTCt
w� ithout modification, the subsequences contained in the
non-stored suffixes may not be included in the answer set
ev� en if  similar to a target query sequence. Therefore, the
steps of�  f inding an d processing th e su bsequences
con� tained in the non-stored suffixes need to be added to
the 

 SimSear

U
ch-STC.

  The proposed algorithm SimSear
U

ch-SSTC includes
the f



iltering step and the post-processing step. During the
f
�
iltering step, D tw-lb

. () is u
*

sed to calcu late distances



betw
�

een Q and the subsequences contained in the stored
suffixes,�  and  Dtw-lb2

. ()  is u
*

sed to com pute distances
betw
�

een Q and the subsequences contained in  the non-
sto� red suffixes.  Dur ing the post-processing, Dtw

. () is
*

applied to th� e subsequences included in the candidate
answ� er set. A detail description of the SimSear

U
ch-SSTC

algo� rithm is in [13].

6.4. Algorithm analysis
�

The complexity of SimSear
U

ch-SSTC is represented as

O(
L

|Q
�

| L nL M r
R R

|Q
�

|L  M r)-(1
p�d

�
2
�

+�+� ) w
0

here n is the number

of  subsequences requiring the post-processing, and r is the
co� mpaction ratio of a SSTC

t . Thus, (1−r)M L  is the number
o f the stored suffixes, and rM L  is the number of the non-
sto� red suffixes.  Co mpared w ith SimSear

U
ch-STC,-

SimSear
U

ch-SSTC reduces the query processing time by
decreasin
�

g the n umber of  cu mulative distance tables
gI enerated during the tree traversal, at the cost of larger n.

7. Experimental results

T
!

o study th e performance of  ou r sim ilarity search
a� lgorithms, w e c onducted several e xperiments on stock
data sequ
�

ences ex tracted f rom S&P 500
(http
*

://biz.swcp.com/stocks/) and o n the artif icial d ata
s� equences. The stock dat a w ere based on  t heir dai ly
cl� osing pri ces. A  total of  545 stock sequences was used
w� ith an  av erage l ength of  232. T he ex pression for
generating the artifI icial sequences was defined as Si[p] =
S



i[p−1] + Zp[  where Zp[  (p=1,2,…) are independent,
identically distributed random variables. Twenty percent
of  th e query sequences were extracted from the stocks
w� hose average pri ces w ere below $30, 50%  f rom t he
s� tocks whose average prices were between $30 and $60,
an� d 30% from the remaining stocks. The query sequences
for the artificial sequences were obtained in a similar
m� anner. The average length of  the query sequences was
set to�  20. All experiments except for the scalability  test in
S



ection 7.3 w ere performed on both t he stock and the
artif� icial sequences.

7.1. Index
�

 siz e and query processing time w ith
increasing number of categories

T
!

able 1 shows the sizes of  the proposed indices built
from the stock sequences, where EL is the equal-length
categ� orization an d ME is the maximum-entropy
categ� orization. While the size of ST is not affected by the
number of categories, STC

t  and SSTC
t  become larger as the

nA umber of categories increases. STCt  and SSTC
t  are smaller

th



an ST due to th e in creased number of  com mon
su� bsequences, and SSTC

t  is smaller than STCt  due to the
decreased n
�

umber of suffixes stored in the index.

Table 1. Index siz
�

es with selected number of
cat� egories

Index Size (Kbytes)

ST
�

C
� SST

�
C
�

#
 c

�

ategories

ST
�

EL
�

ME EL ME

10
20
40
80
120
160
200
250
300

158,512

5,360
�
7,982
�

12,362
18,817
26,888
�
32,860
�
37,837
�
43,413
�
48,087

10,534
15,879
26,069
41,288
51,942
59,927
66,357
72,937
78,297

262
850
�

2,685
3,985
7,657

11,620
15,416
20,326
24,905
�

914
�

2,355
7,108

18,317
28,842
37,922
�
45,449
53,535
�
60,345
 

Table 2 shows the average query processing times of
t


he three proposed similarity search algorithms w ith t he
av� erage distance-tolerance of 30. On  th e whole, as the
number of categories increases, the executions of
SimSear
U

ch-STC and SimSear
U

ch-SSTC become faster.
How
¡

ever, their executions slow down when the number of
categ� ories exceeds a certain th reshold. T his th reshold
v� alue may be used as the optimal number of categories.
F
N

or example, 200 is the optimal number of categories for
SimSear
U

ch-SSTC with EL and 120 is for SimSear
U

ch-
ST
U

C with ME. Using similar-sized indices, SimSear
U

ch-
SST
U

C is faster than SimSear
U

ch-STC, an- d SimSear
U

ch-
SST
U

C based on ME yields better performance than
SimSear
U

ch-SSTC based on EL. We obtained similar
co� nclusions from experiments on the artificial sequences.

Table 2. Average query processing times with
selected number¢  of categories

Average Query Processing Time (sec)

SimSearch-STC Sim
£

Search-SSTC

#
 categ

o
ries

Sim
£

Search-
ST EL ME EL ME

10
20
40
80
120
160
200
250
300

55.30
�

241.94
122.63
54.89
�
30.57
�
26.03
23.08
�
21.42
21.19
�
20.65

84.09
35.57
25.88
21.05
20.93
21.60
22.41
23.67
25.04

215.73
�
122.75
49.61
25.90
21.30
19.13
18.63
19.08
19.55

75.53
30.90
20.65
18.40
20.80
23.49
26.53
30.49
34.15



7.2. Comparison with sequential scanning

Bas
�

ed on the results f rom Section 7.1, we chose ME-
bas
�

ed SSTC
t  as our index structure and compared its

sim� ilarity search algo rithm with sequential scanning.
T
!

able 3 shows their average query processing times with
increasing distance-threshold (ε= ) 0 from 5 to 50. About 50
an� swers were returned when ε=  = 5 and about 350,000
an� swers were reported when ε=  = 50. Here, SeqScan is
se� quential scanning and SimSear

U
ch-SSTC (k) represents

t


he proposed algorithm with k categories. From Table 1,
we�  know that SSTC 

t w� ith 10, 20, and 80 categories require
abou� t 50%, 100%, and 1,000% spaces of  database size
(1,896 Kby
*

tes), respectively. Our proposed technique is
u( p to 4.2 times faster with 10 categories, 11.1 times faster
w� ith 20 cat egories, an d 34.7 t imes f aster w ith 80
categ� ories than the sequential scanning.

Table 3. Comparison of sequential scanning and
�

our algorit¤ hm with selected distance-threshold

Query Processing Time (sec)distance-
th

resh
o

ld
(ε)

Seq
S
�

can

Sim
Search-
SST
�

(10)

Sim
�

S
�

earch-
SST(20)

Sim
S
�

earch-
SST
�

(80)

5
10
20
30
�
40
50
�

206.04
210.48
217.14
217.45
218.13
218.96

  48.96
54.63
71.31
75.62
79.85
81.94

18.61
21.24
�
27.18
30.98
�
34.89
�
38.29
�

5.94
�
9.01
�

14.15
18.49
22.71
27.08

7.3. Scalability study

To study the scalability  of our approach, we compared
th



e execution times of ME-based SimSear
U

ch-SSTC with
th



at of  sequential scanning by increasing the average
length 
�

and the number of the artificial sequences. First, we
increased the average length of the sequences from 200 to
1,000 while keeping the number of the sequences equal to
200. 
¥

And we changed the number of sequences from 1000
t


o 10,000 while maintaining t he av erage l ength of
s� equences equal to 200. F or bot h ex periments, t he
nA umbers of categories were chosen to make the index size
sm� aller than the database size. As shown in Figure 4 and
Figure 5, the performance improvements of SimSear

U
ch-

SST
U

C is maintained for both long sequences and large
nA umber of sequences. Note that th e query processing
tim



es for both sequential scanning and SimSear
U

ch-SSTC

in
�

crease quadratically w ith respect to the average
sequ� ence length and linearly with respect to the number of
sequ� ences.

Figure 4. Comparison of sequential scanning and
our¤  algorithm with selected length of sequences

Figure 5. Comparison of sequential scanning and
our¤  algorithm with selected number of sequences

8. Conclusion

In
'

 this paper we have proposed an i ndexing method
bas
�

ed on a di sk-based suffix t ree, for f ast ret rieval of
sim� ilar subsequences without f alse dismissals. Because
th



e sampling rates and the lengths of  sequences may be
di
�

fferent, t he proposed m ethod u ses a t ime warping
distan
�

ce as a similarity measure that allows stretching or
com� pressing of  sequ ences alon g th e time axis.
Experiments on the stock and the artificial sequences have
s� hown that our proposed technique can be a few orders of
m� agnitude f aster than seq uential scanning. The
con� tributions of our w ork are: 1) ex tending th e exact
m� atching algorithm of a suffix tree to similarity searches
w� ith a tim e warping similarity measure, 2) applying the
ideas of categorization and sparse suffix tree to make an
in
�

dex structure more compact, and 3) in troducing two
lower-bound time warping distance functions, Dtw-lb

. () an
*

d
D
/

tw-lb2
. (), to

*
 filter out dissimilar subsequences without false

d
�
ismissals.
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T
!

he index space can be reduced further if  we know the
mi� nimum and maximum lengths of t he queries. U sing a
w� arping w indow con straint [3], w e can  calcu late the
mi� nimum a nd ma ximum l engths o f t he a nswers. The
su� ffixes whose lengths are sh orter than th e m inimum
answ� er length need not be inserted into the index. For the
suffixe� s whose lengths are longer than the maximum, only
th



e prefixes whose lengths are equal to the maximum
length need
�

 to be stored in the index.
T
!

he subsequences found by similarity searches can be
use( d fo r p redictions, hy pothesis testing, c lustering and
ru� le discovery. For ex ample, in  th e m edical domain,
retrieved subsequences can be used for predicting the
d
�
isease evolution patterns of a p atient; in the w eb

en� vironment, they can be used to discover user web-site
visiting p� atterns.

Ou
L

r approach can be ex tended to the sequences of
m� ultivariate numeric values. Multivariate values are
co� nverted into m ulti-dimensional cells using m ulti-
d
�
imensional categorization methods such as m ultiple-

attribu� te type abstraction h ierarchy (MT AH) [6]. Then,
th



e sam e in dex con struction and query processing
tech



niques are applied to the set of converted sequences.
W
$

e are currently working in this d irection for retrieving
sim� ilar medical image subsequences [7,8].
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