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Abstract

We propose an indexing technique for fast retrieval of
similar s ubsequencesusingt imew arping di stances. A
time warpingd istanceisa mo re suitable similarity
measuret hant heEucl ideandi stance in many
applications, where sequences may be of different lengths
or different sampling rates. Our indexing technique uses a
disk-based suffix tree as an index s tructure and employs
lower-bound distance functionsto filter out dis similar
subsequences without false di smissals. To make theindex
structure compact and thus acceler atethe  query
processing, we convert sequences of continuous values to
sequences of discrete val uesvia a categorization method
and store only a s ubset of suffixes whose first values are
different from their p receding values. Th e exp erimental
results reveal that our proposed technique can be a few
orders of magnitude faster than sequential scanning.

1. Introduction

Similarity searclks inseq@erce databases aimportart
in many application d omains, such as inf ormation
retrieval, d atamining,and c lusteing. D etecting stocks
that have siiar growth p atterns andf inding p atients
whose lung lesions have similar evolution characteristics
are a éwex anples of sim ilarity qu eries. Although
seqential scaming canbe wsed to aswer thesequeries, it
may requre anenormous processingtim e over large
seqerce databases. €cetly, seweral indexing techiques
[1,5,10,22] lwe been propogd D speed up the
processing bsimilarity queries.

Most of the prewous techiques([1,10,22] br smilarity
searcles use the Ewclideandistarce nmetric as a simlarity
measure. Hwever, in many applications, the sanpling
rates ard the lengths of sequerces may be dfferent,
making it d ifficult or im posside to use the Euclidean
distarce as a similarity measue. In the area of speech
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recagnition [15], this poblem hasbeenapproachedusing
a simlarity m easue, called a tim e w arping distance
[3,15], which allows sequerces to be dretched or
conpressed alog the time axs. Under time warping, any
elenen of a sequernce canbe matched to one or more
neighboring elenmens of arother seqeerce. As anexanple
[16], let w corsder two seqerces, S; =
<20,20,21,21,20,20,23,23> &S , = <20,21,20,23>
where the segerce S is the closimg price ofa stocktaken
ewveryday and S, is the closng price of arother sock
taken every other day. S; ard S, camot be conpared
directly becawse the sequerce S; is longer than § The
Euclidean distarce betweenS, ard ary swbseqence of
length fourof S; is geater tlan 1.41. Hovever, if we
duplicate ewery elenert of S, using tine warping, we find
that the two seqerces are idetical.

In the matching d similar seqiencesijt is importantto
prewert the occurrerce of falsedismissals [1]. A false
dismissal occus when a sequerce similar to a qu ery
seqguerce is n ot in cluded in th e answer set. Indexng
techiques that assume th e triangular inequality may
prodice false dismissals whenthe distarce function not
sdisfying thetriangula inequdlity is used as a similarity
measue [22]. Un fortunately, a time warping distarce
does nat sdisfy thetriangula inequdity, which canbe
simply proved by a counter exanple [22]. T his property
makes spatial access methods b asedo n the tr iangular
inequality unsuitalbe for simlarity searches ith a time
warping distarce.

In the area ofstring matching, a sufix tree [17] has
beenextersively used as anin dex structure to find the
sulstrings that are exactlym atchedto the given g uery
string. A suffix tree may be a god camlidat for anindex
structure with a time warping distarce becage it does ot
assumean y g eometryoran Yy u nderlying distan ce
functions. However, for a suffix tree to be usel as an
index structure f or sim ilarity searches, the f ollowing
problems h avet o be addressed: 1) A suffix tree is
designedto find the exactlymatchedsubstrings. Its exact
searchalgorithm needs to be exended to find similarly
matched sulsequences. 2) In genera, a suffix tree is huilt



from seqerces whose elenerts take th e v aues from
finite alphabets.However, seqerces we consider in this
paper are conprised of elemerts of con tinuous real
values. A systenatic method to co nvert co ntinuaus
elenent values taliscrete values is reged.

In this paper ve propog a rew indexng techique for
the fast retrieval o f similar subsequences d d ifferent
lengthsor different sanpling rates. Our technigue uses a
time warping distarce as a siniarity measue ard a disk-
basedsufix treeasanindexstructure. To make the index
structure compact, we convert sequernces of continuous
valuesto sequerces ofdiscrete @ues via a categrization
method and store oy a sibset of suffixes whose first
values are dif ferert f romth eir im mediately precedim
vaues. \WWhenthe qery seqerce, Q, is gven, a sufix tree
is traversed ad time warping distarces betwen Q ard
subseqences cortained in a su ffix tree are conputed.
Because subseqgences cortained in a suffix tree are of
discrete walues, their exact distarces from Q camot be
obtaired. In stead, lower-bound distance functions are
enployed to edimate the exactdistance; so our proposed
technigue guaantees no false dismissds.

This paper is organizedas follows. In Section 2 we
provide a brief overview of the related work on sequerce
matching problens. In Section 3, we give the definition
ard the propertyof a tim e warping distance. Section4
introduces the costruction method and the similarity
searchalgorithm of a diskbased sffix tree. We apply the
ideas of a categrization ard a sparse $fix tree in
Section5 an d Section 6, respectiv ely. Ex perimental
results are given in Sectid.

2. Related wor k

Several aproaches for f astretrievalo f similar
sequerceshave recerly beenproposd. In[1], sequerces
are cowerted into the frequency domain by a Discrete
Fourier Trarsform and are sbseqently mapped nto
multi- dimensional points that are nanagedby an R'-tree;
this technige w as extend edto lo cate similar
subseqences [10]. Sirce the approachs of[1,10] use the
Euclidean distarce metric as a sim ilarity m easue,
sajuences of different lengths a different sampling rates
canna be matched.

Seqience matching that allo ws transf ormations is
propo®d in [11,16]. In [11], sequercesare grouped into
equvalent classes accordimgtoth eirn ormal f orms.
Though naoma forms ae invariant to shae-based
transbrmations suchas scaling andshifting, theydo not
handle the conpressiors or the stretcles of elenment values
along the time axis. The auhorsof [16] propo® a chss of
transformations tha can be used in a query languae to
express similarity w ith an R- tree index. They hande
moving awrag ar gdobal time scalig, but not time

warping.

The access m ethods of [5,14,21,22] perm it the
matching of sequences of different lengths.[5] presents a
modified ersion of an edit distarce, corsidering two
seqerces natching if a mgjority of elemerts match. This
technique is extend edto them atching o f m ulti-
dimensional sequencesin [2 1]. In [2 2], a tim e warping
distarce is used as a similarity measue with a two-step
filtering process: a FastMapn dex filter proceead by a
lower-boundd istance filter. T he underlying index
structures of [5,21,22] a reb ased 0 nthe tr iangula
inequality. The authes o [14] introduce an aligned
subseqence matching with a tim e w arping distan ce.
Whereas their approacks are u seful f or lon g data
seqerces,subseqencesnot startirg or erding at segnert
boundaries anna be found

Similarity matching based on shapesof sequercesis
propo®d in [2,19]. [2] dem onstratesa s hape defnition
language (SDL) a nd p rovidesa nind ex str ucturefo r
speedig up the execution of SDL queries. In[19], the
authass introduce the naion of generalizedapproximate
queries that specify the general shapes ofdata histories.
Whereasboth approacks may handle the variations of
elenent values onthe time axs, they camot be used for
applicatiors that care abaduspecifc elenernt values.

There are also several approactes for m atching of
biological sequerces [4] propost o use a di sk-based
sufix tree for solving the sequernce alignmert problem
ard [20] addreses the probkem of discovering paterns in
protein databeses with the similarity measure 6 a string
edit distace. W hile w ef ocus on th e seqeerces of
cortinuous n umeric v aues, the approaches of [4,20]
certer on the seqierces of characters. Futhermore, the
algorithm of [20] usesa main-memory based suffix tree,
making it infeasilbe for a large seggnce set.

3. Timewar ping distance

In general, finding a similarity measue for sequerces
is not easybecawse segerces tlat are galitatively the
sane may be quantitativelydifferent. First, the sequences
may be of different lengths, making it difficult or
impossibleto enbed tke seqerces ina netric space ath
use the Euclidan distance to d etermine similarity.
Secoml, the sanpling rates ofseqerces nay be differen:
one sequence may be sampled ewery minute while another
sequerce is sanpled every other minute. Siwch differences
in rates nake sinilarity measuresuchascrosscorrelation
unusadle.

In this paper, we usea time warping (TW) similarity
measue [3,15] that allows seqeernces tobe stretcled or
conpressedalorg the time axis. TW is a generalizationof
classical algrithms f or comparing discrete seqercesto
sequerces ofcortinuous values, ail is used exersively in



matching of v oice,au dioan d medical signas
(electrocardiogans). T o f ind th e minimum dif fererce
betweentw o sequerces, TW m aps each elenrent of a
seqerce to ore or nore neighboring elements of another
seglence. Let us now give the formal definition [15] of
the time warping distarce.

Definition 1. Given any two non-null sejuences, § ard S,
the time warping distarce, O,(), is cfinedas bllows :

Dw(S:; S[2:-])
Duw(S:; §) = DoasdS[1], S[1]) + min {D:W(S[Zi-], S)

Dw(S[2:-], S[2:-])
Dpasfa, b) =ja—b [®

In above definition, S[p] repreents the g" elenert of
S ard §[p:q] derotes tke sibseqence of S including
elements in positions p through g. W e use the notation
S[p:-] for the siffix of S starting fom the g" elenent.
That is, §[p:-] is identical to S[p:|S{] w here |S] is the
length of S;. Dypas{) Ontw o numeric values can be ary
distance @inction, but we assune that it is defined asthe
city-block distarce. D(S,S) canbe calcuatedefficiertly
using a dynamic proganming techique [3] basd on the
recurerce relationy(x, y).

Definition 2. Given any two non-null sejuences, S ard S,
the recurerce relation v (X, y) (x=1,2,....8|, y=1,2,..,
[S)) that kuilds the curnlative time warping distancetable
for § ard § is definedas Dllows:

. YIW(XI y_l)
You(X; ¥) = Dpas{ S[X], S[y]) + min {th(x—l, y)
YtW(X_ly y—l)
|
ron| 6 16| 11 | 12
rows| 6 | 13| 9 | 10| =<4 5.6, 7,6 6>
rowd | 7 10| 7 3
rownd| ¢ 6 4 5
row2 5 32| 3
rowl [~ 4 1 1 >
S $ 34| 3 S=< 3 4 3 >

coll col2 col3

(a) Qumulative distage table (b) Mappirg of elenerts

Figure 1. Time warping distance for S, = <3,4,3>
and S, =<4,5,6,7,6,6>

The dynamic progranming algorithm [3] fills in the
table ofcumulative distarces as th conputation proceeds.
This camputation has canplexity O(|S||SI). T he final
cumulative distarce, yw(|S|.|Sl), is the minimum distance

betweenS; ard §, ard the matching of elemerts canbe
traced baclkard in the table by choosirg the prevous
cells with the lowest currulative distance. Figure Shows
the cumulative distance table for tw 0 sequerces, S =
<3,4,3> ad S, = <4,5,6,7,6,6> ah the mapping of
elenerts that generates tle nminimum distarce.

By readirg th e last colu mn of each row of the
cumulative distarce table, ve get the distarce betveenS;
ard ary prefix of S;. That is, the distarce between$ ard
S[1:9] (9=1,2,...,§) is obtained fromthe last column of
the d"row. In the aboe exanple, Du(Ss, S[1:4]) is 8, as
seenin the last céumn of the row 4. Thus, dceternination
as to vihether the time warping distarce oftwo sequerces
is geater thana distancethrestold € doesnot requre
building the ertire cumulative distarce table, as pranby
the Pllowing thesem

Theorem 1. If all cdumns d the last rav of the
cumulative distance table h ave v alues greater than a
distancethreshold €, adding more rows on this table does
not yield the newvalues less tharr @qual toe.

Proof. The proofisgivenin[13]. ®

Let uslook at the take shavn in Figure 11If € is 3
after inspecting the row 3, we can d etermine that the
distarce betweenS; ard S, is geater tlan € becaise all
columns of the row3 h avev aues greater than3.
Therefore, we do not have tofill the rermaining three ravs.
In slbseqent sectiors, we use Theoreml to redwce the
searchspace ofinindexstructure.

4. Similarity search using a suffix tree

In this secton, we propo® © use a sffix tree (9) as
anin dexstructure f or similarity searches with a time
warping di starce. Before describingt he m ethodsf or
corstructing and searcing a suffix tree, we presen the
definition andthe internal structuref@ sufix tree.

A trie is an indexing stiucture usel for indexing ses of
keywords of varying sizes. A suffix trie [17] is a trie
whose setof keywords comprises the suffixes ba single
seqeerce. Nodes with a sin gle outgoing edge can be
collapsedyyielding the structure known as the sufix tree
[17]. A suffix tree is generalizef#,20] to allow multiple
sequerces to be stored irthe sane tree. Eachsufix of a
sequerce is represerted by a leaf node. Precisely the
suffix S§[p:-] is expresed by a leafnodelabeled with (t,p).
The edges are labeled with subseqences sich th at the
corcateration of the edg labels onthe pathfrom the root
to the leaf(t,p) becones S[p:-]. The cortateration of the
edge labels on the path from the root to the internal nale,
N;, represets the longest common prefix of the sufixes
represeted by th e leaf n odes under N;. We e the



notation label(N;,N;) for th e concaterated labels onth e
pahfromN; to N;. Figue 2 shovs the suffix tree
corstructed fromtwo sequerces S = <4,5,6,7,6,6> ah
S¢ = <4,6,7,8>, \ere $' is used as arerd marker of a
suffix.

(5,2) (5,4)

(63

(51) (61)

(5,3) (6,2)

Figure 2. Suffix tree from S,=<4,5,6,7,6,6> and
$,=<4,6,7,8>

4.1. Index construction

A suffix tree br multiple seqiencescanbe constructed
by adding a special sequerce separatorsymbol to the
alphabet. The seqierces to be included in the tree are
corcaterated, separateddm eachother by this separator
symbol. Then, the odinary suffix tree algoithm is applied
to the concaterated seqerce. The suffix tree created
usingthis process has tdoe kept in main memory during
construction. Therebre, this agproach is nd realisticto a
large seqerce set.

To renmedy the problem we use anincrenmenal disk-
basd suffix t ree construction m ethod proposed in [4].
Two suffix trees represrting two digoint sets of
sequerces,are merged to prodice a simgle sufix tree by
pre-ordertraversal of both suffix treesand combining the
paths corresponding t o common subsequences A suffix
tree for a larg e set of sequerces canbe constructed by
performing a series of bi nary mergesof suffix t reesof
increasiny size. The merge operationof two suffix trees
cans upportdi sk-based repreentationsi n | imited main
memaory.

Two suffixtreesforS; amdS; are nerged with
complexity O(| S|+S[), hence th e suffixtreef or M
sequencesis constructedvith complexity O(M L) where
L is the aerag lergth of M sequerces.The total number
of nodes ina sufix tree is corstrained due to two factors:
1) there are O(M.) leafnodes aml 2) the degee ofany
intermal node is at least 2. T  herefbre, the m aximum

number of nodes ard overall space requremert of the
suffix tree is linear in ML [17].

4.2. Search algorithm: SimSearch-ST

A sufix tree (ST) is a useful indexstructure to locate
subseqgences th at are ex actlym atched to a query
seqerce Q. To find exactly matched subseqeences, Qis
traversed from the root of th e tree an d trav ersal is
terminated whenthe end of Q is reached or a node is
reacted beyond w hich f urther traversal is not possible.
Exact searches are performed in O(|Q|). Even though the
exact matching algorithm of a suffix tree is simple and
fast, it cannad be directly applied to the problemwe are
going to sdve in this faper.

Problem Definition: Given M sequerces $,S,,...,Sy of
arbitrary lengths, a query sequerce Q and a u sergiven
distarcethredhold ¢, find the subseqences S[p:q] (i =
1,2,...,M) whose tine warping distartes fom Q areless
than o ecual toe. B

Our proposd smilarity searchalgorithm SimSearch-
ST is given in Agorithm 1. The search startsdm the
root of a sufix tree ar cortinues the depthfirst traversal
until all sutsequences vinose time warping distancesare
less than pequal tog are bund.

Input : Root NodeR, Q, €
Output : arswerSet

cumDistTable < NULL;
amswerSet « Filter-ST (R, Q,&, cumDistTable);

return amwerst;

Algorithm 1. SimSearch-ST

The actual filtering process is executedn Filter-ST
shawvn in Algorithm 2. When Filter-ST visits a nale N, it
inspects eackhild nodeCN; to find a rew arswer ard to
deternine whether further depthtraversal is mededor not.
For sinpler explanation we assune that the edg between
two nodes N ard CN;, is lakeled with a single value.

To find a new arswer, Filter-ST builds a cumulative
distarce table 6r Q ard label(N, Q\;). If N is a rootnode,
the tabbe is built f rom the bottom. Otherwise, the talle is
corstructed byaugmerting a new row on the table T that
has beenaccumulated fromthe root to N. The function
AddRow(T, Q, | abel(N, CN;), Dy() buldsan ew
cumulative distance table, using the distarce function
Dw/(), by augmenting anew row corresponding tolabel(N,
CN,) onT. Suppo thatthe r'" row is the newy acded
row. If the last column of the r'" row has the value less



than @ equal to ¢, label(GetRmt(CN,), CN,)) isinserted
into the answer set.

To determine if further depth traversal isneeckd
Filter-ST uses TheoremL. If at least oa column of the "
row has a value not greater than €, the searchcontinues
down the tree to fnd more arswers. Otlerwise, the search
moves tothe next childof N.

Input : NodeN, Q, &, Cumnulative Distarce Table T
Output : arswerSt

arswerst « {};
CN « GetChildren(N)

for i « 1to |CN|do {
CT, « AddRow(T, Q, labd(N,CN;), Dw,();
Let dist bethelast mlumn value of thenew row;,
Let mDist be the minimum column value of the new row;
if dist < g, insat labd(GetRoot(CN),N;) into answerSH;
if mDist<¢,
aswerSe « arswerSet U Filter-ST(CN,, Q, €, CT));
}

return arswerst;

Algorithm 2. Filter-ST
4.3. Algorithm analysis

Before aralyzing the conplexity of SimSearch-ST,
let us exarime the conplexity of seqential scanning.
Sequertial scaming reads eachsequerce and builds as
many cumulative distarce tables as thrumber of suffixes
cortained in the seqeerce. The conplexity of building a
cumulative distarce table for the query sequerce Q and
the suffix of lengthL is O(L|QJ). For M sequences whose
averag lengthis L, there are M L suffixes andtheir
averag lengthis (L+1)/2. Therebre, the conplexity of

seqglential scanning is O(IQI2|Q|).

SimSearch-ST is canputaticnally less expnsivethan
seqertial scanning du e to bran ch-pruning (based on
Theoreml) and sharing cumulative distarce tables or all
sufixes that have conmon prefixes. Thus, the conplexity

of SimSearch-ST is O(M L 1QlY, where Ry (21) is the
RdRp

redwction f actor due to sharing the cumulative distarce
tables, ad R, (1) is the redction facta gainedfrom the
branch-pruning. R4 grows & thelength and the nunber of
conmon prefixes ofthe sufixes cortained in a siffix tree
increase. G iven k suffixe s, a,a,,...,04, Whose firstt

elenerts are the sang, the construction of k cumulative
distarce tables reques the conputation of |Qla| + [Qlet
+ ... +|Qud cells. Ho wever, itisred uced to tjQ| +

Qo) + [QI(otal—t) + ... +|Ql((oud-t) if the cumulative

distarce table br Q and the conmon prefix of length t is
shared byk suffixes. In this case,Ry canbe eyressed as
Ry = (fota|Hotal+.... +oud) / ((Jota|Hotal+. .. +oud) — t(k—=1)).

While Ry is cetermined by the dstribution of elenent
values, R, is dectled bythe number of arswersrequred
by a user. That is, R, increases as #distarcethrestold &
decreases. Ife is so small that just one or two
subsequencesmay be arswers only the topnmog partof a
suffix tree may be visited during the query procesing. In
arpother ex treme case where ¢ is large enough fa al
sltbseqences to be awers, all mdes ofasufix treeneed
to be visited, thus naking R, = 1. Inthe worst casewhere
thereis no common subseqgence ard the brarch-pruning
canna hdp, both vaues of Ry ard R, are 1, ad therebre
the canplexity of SimSearch-ST becones the sane as
that d seaquiential scanning.

5. Similarity search using categorization

In this sectio nw eintro ducetheco ncego f
categ@rization to decrease the number of v alues that
elenerts cantake and thus increasethe length and the
number of common subseqences. As explained in the
previous sectio, if the lengthandthe nurnber of common
slbseqences increase, the in dexsize an d th e query
processig time are redwed. To g et th e categorized
representatiasof elerent values, wfirst generate the set
of cate@ries anl deternme their rarges. Then, we corvert
every element value to the symbol of the correspoding
cate@ry. For exanple, gven two categries G =[0.1,3.9]
adC, = [4.0,10.0], $ = <5.27, 2.56, 3.85>si
trarsformed to CS; = <G,, C;, C;> where CS; denates the
corverted segerce of S;. Thus, sequences of continuaus
values are coverted to seqerces ofdiscrete sgnbols.

5.1. Categorization method

In this work, the bllowing two categeization methods
have been chosen ard experimented for their simple
implementations, albeit oth er categorization approacks
like the type abstractiorhierarcly (TAH) [6] and the k-
mears algorithm may also be sed to categrize elenert
values.

The first method is an egaldength categdzation. As
the naneim plies, all the categaies have eqial interval
length (MAX-MIN) / c. Here, MINis the smallestelement
value bundin the set of seqiences,MAX is the largest
elenernt vaue found in the set ofseqlerces, am c is the
nunber of categoies given as the iy parameter to the
categ@rizationalgorithm. T his categrization approachis
simple and f ast, but lo ses information about value and
frequency distributions of the seqerces.



The secon dm ethod is a maximum-ertropy
cate@rization T he entropy[18] of a categ@rization is

defined as H(C)=—Z;P(Ci)logP(Ci) where RC) is

the pobability that an elem ent is includ edin the i th

categoy. T o minimize the loss of inf ormation about the
sequerces, this categ orizationm ethod decides th e
cate@ry boundaries that generate the maximum entropy
value. The bowndaries carbe deterrimed easilyby making
all categriesinclude the sane number ofelerens (RC,)
=FCy) = ... = RCY)).

It is not easyto determine the nurber of categoies:
too many categories do not help much to increasethe
number of conmon sbseqences, bt likewise, toofew
cate@riesdon oth ep m uchtoredu ce the query
processimy time becase d the decreasediltering rate of
the indx. A simple strategyis to do many experimentson
the set of sequerncesand determine the bes number of
categories using thecost fundion W,C; + W(C,. Here, ¢
ard C; are costsdr processig the query ard storing the
index respectively, and W ard W ¢ are their relative
weights. T he d etermination o fthesew eights is
application-dependent.

5.2. Index construction

After convertingelementvalues intodiscrete sgnbols,
we build a sufix tree fom the setof corverted seqierces.
We denate theresultantreeSTc. STc is canstructedusing
the same constuction algorithm used fo r an o rdinary
suffix tree.

5.3. A modified distance function: Dyy.n()

Whereasthe edges of a suffix tree are labeled with
numeric values, the edgs of ST¢ are lalgled with discrete
symbols. As a result, th e exact time warping distance
between a query sequerce of n umeric vaues and any
subseqence contained in ST ¢ camot be conputed.
Therebre, we introduce thre rew distarce function Dy, ().

Definition 3. Given two non-null sejuences, S ard §, the
distarce function D w.,(S, CS) that returns the iver-
bound distance of Dy (S;, §) is definedas bllows:

Dw(S,CS[2:-])
D(S[2:-],.CS)
Dw(S2:-],C§[2:-])

Diw-1o(Si,CS) = Dpaein(S[1],CS§[1]) + min

0 (if B.Ib< a< B.ub)
Db&m(a, B) = { a-B.ub (If a> BUb)
Blb—a (if a< B.Ib)

where‘a is the numeric value correspoding to S[1] ard

‘B’ isthe caegory symbol correpording to CS[1]. B

In the dfinition of D paseaf), B.Ib and B.ub are the
minimum and the meximum elerrert values, respectsy,
found in the cate@ry B. Asshown in Figure 3, Dyase.fa,
B) retuns the possible imimum distarce betveena ard
B.

B.ub
®a possible minimum distance
B.lb —— =0
®a
B.ub
possible minimum distance
B.lb ———— =a-B.ub
B.ub —
possible minimum distance
B.lb —— =B.b-a
®a

Figure 3. Minimum distance between a and B

To prewert falsedismissals, te distage retuned fom
Duw-(S, CS) shaild always be less than o equal to the
distarce conputed by D (S, §). Theorem2 statesthis
fact.

Theorem 2. For ary two non-null seqeerces, S ard S,
the Pllowing ineqality hads.

Dt\N—lb(Sia C%) < DtW(Sf S)
Proof. The proofisgivenin [13]. W

5.4. Search algorithm: SimSearch-ST,

Input : Root NodeR, Q, €
Output : arswerSet

cumDistTable « NULL;
candidaeSd « amswerSet « {};

candidaeSea <« Filter-ST¢ (R, Q,€, cumDistTable);
armswerSet « PostProcess(cadidate S, Q, €)

return arswers;
Algorithm 3. SimSearch-ST,

The algrithm SimSearch-ST needsto be nodifiedto
reflect the categrized represetationof elemen v aues.
Our propogd sarchalgorithm SimSearch-ST, is shavn
in Algorithm 3. Note that elemert v aues of a qu ery
sequerce are ot corverted to discrete gybols.

Tof ind th e candidate subseqences whose lower-



bound distances to the query sequerce Q are within g,
Filter-ST, is calledrecursively Filter-ST_ is thesane as
Filter-ST except ttat the former wses Dy,.,() to build the
cunulative dstance tale while the latterusesDy,(). Snce
the lowver-boundd istance is used f or f iltering, the
subseqences whose exact time w arping distances are
larger thare may be ircluded inthe camlidatearswer set.
These shbsegences are calledalsealarms. For each
arswer con tained in th e candidate answer set, the
algarithm PostProcess retrieves the acta subseqences
and conputes treir exact time warping distarces.Finaly,
the sibseqences whose actal time warping distarces are
not larger thane are retuned asarswers. Algorithms
Filter-ST, ard PostProcess are anitted due to space
limitations.

5.5. Algorithm analysis

The camplexity of SimSearch-ST, is represeted as
=2
O(LIQI +nL|Q|) wheren isth e number of
Rd Rp

slubseqences requring the post-processig. Hence, the
left expression representsthe time for f iltering and the
right expressionrepresets the time for postprocessig.
Compared to  SimSearch-ST, SimSearch-ST, hes
performance improvemerts due to a larger value of Ry,
despite the extra tira for post-processing

6. Similarity search using a spar se suffix tree

A suffix tree that stores orly a subset of suffixes is
calleda sparse sffix tree [12]. Since the size ofa suffix
treeis linear inthe number of leaves, a sparse gtix tree
is snaller than an original suffix tree. Suffixes inserted
into a treeare called stored suffixes, and suffixes not
inserted im0 a treeare called non-stored s uffixes. T he
rediction of the indexsize by storing only a subset of
sufixes is measwed bythe compactionratior (0<r<1)
that is defined as r = (the nunber of non-staed suffixes) /
(the number of suffixes). In this secion, we propo to use
a sparse $tix tree to further reduce the index size ard
accelerate th qLery processig.

6.1. Index construction

Similar to STc, a sprse sufix tree is hiilt from the set
of categorized sequerces. However, unlike STc, orly
suffixes w hosefi rstva luesa re different from their
immediately precedimg values are stored ia sparsesufix
tree. That is, the sufix CS[p:-] is staed only if CS[p] #
CS[p-1]. For exanple, for CS = <C,C,,Cy,G;,C,,Co,
only the three sufixes (CS[1:-], CSg[4:-], and CSg[5:-])

are stored ira sparse sffix tree. We derote the resutant
tree SSE.

6.2. A modified distance function: Dyy.p2()

Suppog that we have the cunulative distance t&ble for
S ard CS where $ ard CS; are located alanthe x-axs
ard the y-axs, respectiely. While we canget the distarce
betweenS; ard ary prefix of C§ by readig the last
column of eachrow, there is ro direct way to conpute the
distarce betweenS; ard ary suffix of CS except by
building a newtable. However, if the first N elenments d
CS have the sane value, we canobtainthe lower-bound
distarce of D w.(S, CS[p:-]) (p=2,3,...,N) @ing a new
distarce function, Dy,.in2(S, CS[p:-]).

Definition 4. For ary two non-null seqerces,S ard CS,
if the first N elenerts of CS have the sagwalue, then the
distarce function D w.x2(S, CS[p:-]) (p=2,3,...,N) that
retuns the lower-bound distance of Dy,.in(S, CS[p:-]) is
defined asfollows:

Du162(S,CS[P:-]) = Dew-1o(S:,CS) — (0—1) UDpese 15(S[1], CS[1])
]

If we know the vaue of Duyy.p(S;,CS), thenD w.in2A(S;,
CS[p:-]) can be computed with complexity O(1). The
distarce retuned from Dy,.p2(S,CS[p:-]) is always less
thanor equal to Dy,.in(S;, CS[p:-]). The following the@sem
states tls fact.

Theorem 3. For ary two ron-null seqierces, $ard §, if
the first N elenerts of CS have the samvalue, then the
following inequality holds for p = 2,3,...N:

Diw-b2(S,CS[p:-]) < Dw-in(S,CS[p:-]) < Dl S, Slp:-])
Proof. The proofisgivenin [13]. B
6.3. Search algorithm: SimSearch-SST,

The algrithm SimSearch-ST, needsto be nodified
to refect tte fact that thereare sone sufixes not storedin
the indx. If SimSearch-ST, is aplied to a SSE
without modification, the subsequences catainedin the
non-stored stfixes may not be ircluded inthe arswer set
evenif similar to a target query seqierce. Therebre, the
steps off indingan d processingth e su bsegences
cortained in the non-stored stifixes need to beaddedto
theSimSearch-ST..

The propo®d algorithm SimSearch-SST, includes
the filtering stepandthe post-processing stepDuring the
filtering step, D w.p() is usedto calcu late distarces



betweenQ and the subseqeences cortained in the stored
suffixes,and Dy, n2() is wsed to com pute distances
betweenQ and the subseqences cortained in the non-
stared suffixes. Dur ing the post-processing, Dy,() is
applied to tle subseqences included in the cardidate
ansver set. Adetail description of the SimSearch-SST,
algaithmiis in [13].

6.4. Algorithm analysis

The camplexity of SimSearch-SST, is represeted as

—2
O((l-r)Mé_ QI +rML +nL|Q|) Where nis the number
dRe
of subsequencesrequiring the pos-procesing, and r isthe
compaction ratioof aSSTe. Thus, (1-r)ML is the nurber
of the stoedsuffixes,andrM L is thenurrber of the non-
stored suffixes. Co mparedw ith SimSearch-ST,
SimSearch-SST, redwes tle qlery processig time by
decreasig the n umber of cu mulative distance tables
generated duing the tree traersal, at tk cost oflarger n

7. Experimental results

To study th e performance of our sim ilarity search
algorithms, w e conducted severa e xperiments on stack
data segercesex tractedf rom S&P 500
(http://biz.swep.com/stacks/) ando n the artif icial d ata
sequerces The stock dataw ere based on t heir dai ly
closng prices A total of 545 stock sequenceswas used
with an av erag | ength of 232. T he expresion for
generating the artifial sequences ves definedas S[p] =
S[p-1] + Z, where Z, (p=1,2,...) are idepemernt,
identically distributed rancom varialdes. Twenty percent
of the query sequerces were extracted from the stocks
whose average pricesw ere below $30, 50% f romt he
stocks whose average priceswere betveen$30 and $60,
and 30%fromthe renaining stocks. The query sequerces
for the artificial seaiences wre ddtained in a sinilar
manner. The average length of the query seqeernceswas
set t020. All experiments excepfor the scalalility testin
Secton 7.3 w ere performed on both t he stock and the
artificial seqiences.

7.1. Index sizeand query processing timew ith
increasing number of categories

Table 1 shows the sizesof the propo®d indicesbuilt
from the stock seqerces, vihere ELis the equl-length
cate@rizationan d ME is the maximum-erntropy
categrization While the size of ST is not affected bythe
number of cakegories, ST andSST: becone larger as tle
number of cate@ries ircreases. SJandSST; are smaller

than ST due toth e in creased number of com mon
sbseqences, ard SSTc is snaller than ST due to the
decreasedumber ofsufixes stored irthe index

Table 1. Index sizes with selected number of

categories
** Index Size (Kbytes)
8
& STc SSTc
S. ST
3 EL ME EL ME
10 5,360 10,534 262 914
20 7,982 | 15,879 850 | 2,355
40 12,362 | 26,069 2,685| 7,108
80 18,817 | 41,288 3,985| 18,317
120 158,512 | 26,888| 51,942 7,657 | 28,842
160 32,860 59,927| 11,620 37,922
200 37,837| 66,357 | 15,416| 45,449
250 43,413 72,937| 20,326| 53,535
300 48,087 | 78,297| 24,905| 60,345

Table 2 shows the averag qiery processig times of
the three propo£d similarity searchalgorithms with the
averag distarce+tolerarce of 30. On the whole, as the
number of categries ircreases, # excuions of
SimSearch-ST. ard SimSearch-SST_ becone faster.
However, their executions slow down whenthe rumber of
cate@ries exceeds a certainth restold. T his th restold
value may be used as the optimal number of categries.
For exanple, 200 s the opimal number of categories for
SimSearch-SST_ with EL ard 120 s for SimSearch-
ST, with ME. Udng smilar-sized irdices SimSearch-
SST, is faster thanSimSearch-ST,, ard SimSearch-
SST. basd on ME yields beter perfbrmance tan
SimSearch-SST. bagd on EL. We obained smilar
conclusims from experiments m the artifcial seqiences.

Table 2. Average query processing times with
selected number of categories

* Average Qaery Processig Time (sec)

8

& Sim SimSearch-ST, | SimSearch-SST,
=4 Search-

n ST EL ME EL ME
10 241.94| 84.09 215.73| 75.53
20 122.63| 35.57 122.75| 30.90
40 54.89| 25.88 49.61| 20.65
80 30.57| 21.05 25.90| 18.40
120 55.30 26.03| 20.93 21.30| 20.80
160 23.08| 21.60 19.13| 23.49
200 21.42| 2241 18.63| 26.53
250 21.19| 23.67 19.08 | 30.49
300 20.65| 25.04 19.55| 34.15




7.2. Comparison with sequential scanning

Basd onthe resllts from Secton 7.1, we chose ME-
baed SSTc as ow index struwcture ard conpared its

similarity search algo rithm with seqiential scanning.

Table 3 stows their averag query processig times with
increasimy distarcethrestold (€) from5 to 50. Abou 50
arswers were returned when € = 5 ard abou 350,000
arswers were reported when € = 50. Here, 8qScan is
sgquential scanning and SimSearch-SST,, (k) represets
the propo®d algorithm with k categories. From Table 1,
we know that SSTcwith 10, 20, anl 80 caegories require
abou 50%, 100% and 1,000%spacesof databag size
(1,896 Kbyeg, respectively. Our propogd techique is
up to 4.2 imesfaster with 10 caegories, 11.1 imesfaster
with 20 cat egories, an d 34.7t imesf aster w ith 80
cate@ries ttanthe segertial scaming.

Table 3. Comparison of sequential scanning and
our algorithm with selected distance-threshold

= Query Processing Time (sec)
[%2]
% g S Sim Sim Sim
Zo Scaa]n Search Search Search
=~ SST(10) SST(20) | SST80)
5 206.04 48.96 18.61 5.94
10 210.48 54.63 21.24 9.01
20 217.14 71.31 27.18 14.15
30 217.45 75.62 30.98 18.49
40 218.13 79.85 34.89 22.71
50 218.96 81.94 38.29 27.08

7.3. Scalability study

To study the scalalility of our approach, we compared
the execution times of ME-basedSimSearch-SST, with
that of sequertial scanning by increasilg the average
lengthandthe nunber of the artifcial seqiences. First, &
increagdthe averag length of the quencesfrom 200 b
1,000while keeping the number ofthe quencesequal to
200.And we charged the number of sequencesfrom 1000
to 10,000 while maintainingt he av erag | ength of
sequerces equal to 200. F or bot h ex periments, t he
numbersof categ@rieswere closento make the indexsize
smaller thanthe database size. #shown in Figure 4 ard
Figure 5, the perbrmance mprovenerts of SimSearch-
SST, is meintained for both long seqencesand large
number of sequerces. Note that the query processing
timesfor both seqiential scanning an@&imSearch-SST,
increase quadraticallyw ith respectto  the awerag
seqerce lergth ard linearlywith respect to th number of
seqglerces.
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8. Conclusion

In this paperwe have proposed ani ndexng method
based ona di sk-based suffix t ree, for f ast retrieval of
similar subsegences without f alse dismissals. Becase
the sanpling rates ard the lengths of sequernces may be
different, t he proposed method usesat ime warping
distarce as a similarity measue that allows stretching or
conpressimg of sequ erces alon gth e time axs.
Experiments o the stak andtheartificial seqienceshave
shown that our propo®d techique canbe a fw ordersof
magnitude f aster than seq uential scanning. The
cortributions of our w ork are: 1) ex tending th e exact
matching algaithm of a suffix tree to similarity searches
with a tim e warping similarity measure, 2 applying the
ideas ofcategrizationard sparse dtix treeto make an
indexstructure more compact, and 3) in trodwcing two
lower-bound time warping distance fundions, Dy, () ard
Duv-ib2(), to filter out dissimilar sutsequenceswithout false
dismissals.



The indexspace catbe redued further if we know the
minimum and maximum lengths of the queries. Using a
warping w indow con straint [3], w ecan calculate the
minimum and maximum | engths o f t he a nswers. The
sufixes whose lengths are sh orter thanth e minimum
ansver length neechot be insertedinto theindex. For the
suffixes whose lengths @&e longe than the maximum, only
the prefixes whose lengths are equal to the maximum
length needo be staedin the inax.

The subseqences found by similarity searcles canbe
usd fo r p redictions, hy pothesis testing, c lusteing and
rule discovery. For ex anple, in th e medical domain,
retrieved sibseqences canbe wsed for predictirg the
disease evdution patterns of ap atient; inthew eb
environment, they can be used to discower user web-site
visiting patterns.

Our approachcan be ex terded to the sequerces of
multivariate num eric values. Multivariate values are
converted into m ulti-dimensional cells using m  ulti-
dimensional categoization methods such as m ultiple-
attribue type abstractiorhierarcly (MT AH) [6]. Then
the samein dexcon struction and query processig

techiques are applied to tk setof corverted seqeerces.

We are currentlyworking in this direction for retrieving
similar medical image sibseqences [7,8].
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