Discovering and Matching Elastic Rules
from Sequence Databases

Contact Author: Sanghyun Park (shpark@cs.ucla.edu)
Phone: (310) 206-4825
Fax: (310) 825-7578
Boelter Hall 4833
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095, USA

Author: Wesley W. Chu (wwc@Qcs.ucla.edu)
Department of Computer Science
University of California, Los Angeles

Abstract. This paper presents techniques for discovering and matching rules
with elastic patterns. Elastic patterns are ordered lists of elements that can be
stretched along the time axis. For example, (4, A, B, B, B) is an instance of an
elastic pattern AB while (A, C, B) is not. Elastic patterns are useful for discover-
ing rules from data sequences with different sampling rates. For fast discovery of
rules whose heads (left-hand sides) and bodies (right-hand sides) are elastic pat-
terns, we construct a trimmed suffix tree from succinct forms of data sequences
and keep the tree as a compact representation of rules. The trimmed suffix tree
is also used as an index structure for finding rules matched to a target head
sequence. When matched rules cannot be found, the concept of rule relazation
is introduced. Using a cluster hierarchy and a new distance function based on
relaxation error, we find the least relaxed rules that provide more specific infor-
mation on a target head sequence than the other relaxed rules do. Experiments
on synthetic data sequences shows the effectiveness of our proposed approach.

Keywords. Knowledge Discovery and Data Mining, Elastic Patterns, Sequence
Databases, Suffix Tree, Type Abstraction Hierarchy, Rule Matching, Rule Re-
laxation

1 Introduction

Rule discovery from sequential data is one of the major areas in data mining for
trend prediction [3, 8]. There have been several approaches [1, 7, 9, 10, 13, 15]
to discover useful rules from such data. Most rules from data sequences have
the format ‘u[tl] — v[t2]’ where p and v are patterns and ¢1 and ¢2 are time
intervals. They are interpreted as “if the pattern u occurs within the time interval
t1, then the pattern v will follow within the time interval ¢2”.

A pattern is defined as a partially ordered collection of elements. According
to the constraints on the arrangement of elements, patterns can be classified as:
serial patterns, parallel patterns, and non-serial and non-parallel patterns [9, 10].
Serial patterns require the occurrence of elements in a specified order while
parallel patterns require the occurrence of elements without imposing any order.
The patterns having both serial and parallel patterns are called non-serial and
non-parallel patterns.

As a subset of serial patterns, we can think of elastic patterns where ele-
ments can be stretched along the time axis by replicating themselves. Elastic
patterns AB and ABC are interpreted as AT BT and ATBTCT, respectively,
using the notation of a regular expression. (A, B) and (A4, A, B, B, B) are in-
stances of an elastic pattern AB while (A, C, B) is not. Elastic patterns are
useful for discovering rules from data sequences whose sampling rates may vary.
For example, consider medical data sequences that record the body temperatures
of patients. Some data sequences may have temperature values taken every day
while others may have values taken every week. Furthermore, even within a single
data sequence, time intervals between neighboring temperature values can vary
non-linearly. These sequences cannot be compared directly without considering
stretches or compressions of elements along the time axis.

The rules whose heads (left-hand sides) and bodies (right-hand sides) are
elastic patterns are called elastic rules. Given elastic patterns a and (3, elastic
rules have the format ‘a — §’ that is interpreted as “if there occurs a sequence
which is an instance of «, then it will be followed by a sequence which is an
instance of 3”. Time intervals are not associated with elastic patterns because
these patterns are flexible on the time axis.

There are many techniques [1, 7, 9, 10, 13, 15] to discover rules with se-
rial patterns. Many of them use the relationship between patterns and their
sub-patterns. Given the serial patterns AB occurring 200 times and ABAC oc-
curring 150 times, they extract the rule ‘AB — AC with confidence 132(=0.75)’.
Infrequent patterns whose numbers of occurrences are below a threshold are ig-
nored because infrequent patterns are considered insignificant. To find frequent
patterns, they first find short frequent patterns and then combine them to gen-
erate longer candidate patterns. Candidate patterns are checked whether they
are frequent or not. These combining and checking steps are repeated until all
frequent patterns are found. Therefore, repeated readings of data sequences are
unavoidable. However, if we focus on discovering elastic rules, better algorithms
that require fewer database accesses can be developed.

II

-> ->
q =<AB,E> empty answer q =<AB,E> R1’
\ + l |
Rule matching system Rule matching system
R1: ABD->C
R1: ABD->C ‘ R2: ABF->A °
R2: ABF->A R1":ABY->C
O E N OIOIO,
Original rules Cluster hierarchy Original rules Cluster Hierarchy
and relaxed rules

(a) Exact rule matching (b) Relaxed rule matching

Fig. 1. An example of rule matching. Without relaxation, neither rule can be matched
to ¢- However, both R} and Rj cover after relaxation. The least relaxed one (R}) is
returned to a user.

Once rules are discovered from data sequences, they may be used to predict
the future trend of a target head sequence ¢ via the process of rule matching.
We say that a rule is matched to ¢ when each element of the rule head is equal
to the corresponding element of §. However, if there are large number of rules,
it is not a trivial task to find rules efficiently that are matched to §.

There are some occasions when we fail to find rules matched to a target
head sequence ¢. This failure often occurs when ¢ is not a frequent sequence.
For those infrequent target head sequences, we can introduce the concept of rule
relazation. Based on a cluster hierarchy, a rule R is relaxed to R’ by replacing
some elements of R with elements denoting higher concepts or broader ranges.
Given a target head sequence ¢ and a rule R that is not matched to ¢, we can relax
R to R' so that R' can cover . We say that a rule covers ¢ when each element
of the rule head represents the same range as or broader range than the one
represented by the corresponding element of ¢. In a cluster hierarchy, an ancestor
node represents higher concept or broader range than the one represented by its
descendant. For instance, consider the cluster hierarchy and the relaxed rule
‘R} : ABY — C’ shown in Figure 1. R; covers ¢ = (A, B, E) because the first
two head elements (=AB) of R; are same as their corresponding elements of
¢ and the third head element (=Y') of R} is the parent of the corresponding
element (=F) in the cluster hierarchy.

Among many relaxed rules that can cover ¢, we are interested in finding the
least relaxed rules since they describe ¢ more accurately than the other relaxed
rules do. As an example, consider the rule matching system shown in Figure 1.
Neither ‘R; : ABD — C’ nor ‘Ry : ABF — A’ is matched to ¢ = (A, B, E).
However, both rules can be relaxed to cover ¢. Since D and F' may by relaxed
to Y and U respectively, we obtain the relaxed rules ‘R} : ABY — C” and

II1

‘R, : ABU — A’. Now, both relaxed rules cover ¢. Because R} is less relaxed
than R}, R is chosen as an answer. We call the above process relazed rule
matching.

In this paper, we propose a method to discover elastic rules from sequence
databases. We also present efficient techniques to find matched rules and to
derive the least relaxed rules. We assume that data sequences consist of elements
having univariate numeric values. The main data structure we are using is a suffix
tree [14]. For fast discovery of elastic rules, we construct a trimmed suffix tree
from succinct forms of data sequences. The trimmed suffix tree is used for both a
compact representation of rules and an index structure for rule matching. Rules
matched to a target head sequence are found by an exact matching algorithm,
and the least relaxed rules are obtained by a similarity matching algorithm that
uses a distance function based on relaxation error [5]. We use a type abstraction
hierarchy (TAH) [5, 6] to acquire the symbolized representations of element
values and to derive the relaxed rules.

2 Background

2.1 Suffix tree

A suffix tree [14] is an index structure that has been proposed as a fast access
method to locate substrings (or subsequences) that are exactly matched to a
target string (or a target sequence). The suffix tree structure is based on tries
and suffiz tries. A trie is an indexing structure used for indexing sets of keywords
of varying sizes. A suffix trie is a trie whose set of keywords comprises the suffixes
of sequences. Nodes of a suffix trie with a single outgoing edge can be collapsed,
yielding a suffix tree. Each suffix of a sequence is represented by a leaf node.
The concatenation of the edge labels on the path from the root of the tree to the
internal node N represents the longest common prefix of the suffixes represented
by the leaf nodes under N. We use the notation PN for the parent node of N,
and the notation label(N;, N;) for the labels on the path connecting nodes N;
and Nj.

2.2 Type abstraction hierarchy

Type Abstraction Hierarchy (TAH) [5, 6] is a data-driven multi-level cluster
hierarchy that uses relaxation error as a goodness measure for clusters. For a
cluster C = {z1,z2,...,2,} having n elements that may or may not be unique,
the relaxation error of C' is defined as RE(C) = >2i_, >°7_, | #; — x; |. The
algorithms for generating binary and n-ary TAHs are given in [5]. TAH has
the following benefits: 1) The algorithm considers both value and frequency
distributions, thus generating more accurate clusters than equal-length interval
clustering methods, and 2) TAH is easier to implement than maximum-entropy
clustering methods. Figure 2 shows an example TAH built from data sequences
whose elements take values within the range of [0, 7.0). The relaxation error and
the value range are stored in each node, and the nodes are labeled with the
unique symbols.

v

RE=0.85
[0,7.0)

RE=0.45
[0,4.0) [4.0,5.9)
Aﬂ\c D/\E G
RE=0.01 RE=0.02 RE=0.21 RE=0.31 RE=0.24 RE=0.21 RE=0.09
[0,1.8) [1.8,2.5) [2.5,4.0) [4.0,5.0) [5.0,5.9) [5.9,6.5) [6.5,7.0)

Fig. 2. A TAH example. Each node is labeled with a unique symbol. The value range
and the corresponding relaxation error are stored at each node.

3 Rule discovery

In this section, we propose an efficient method to discover elastic rules from data
sequences via a suffix tree. We assume that the TAH has been generated from
data sequences and distinct symbols have been assigned to the TAH nodes. The
problem of elastic rule discovery is defined as follows: Given a database with M
sequences I1,%a,...,Zy and the minimum support value SU P,,;,, discover rules
composed of elastic patterns whose supports are at least SUP,,,;y, .

The support value of the pattern « is defined as the number of suffixes having
a as their prefixes. SU P,,;, is the minimum support value that is used to filter
out infrequent patterns. We can also define the relative support value of the
pattern a as RSUP(a) = (the number of suffixes having « as their prefixes) /
(the total number of suffixes). The relative support is better than the (absolute)
support in applications where the total number of data sequences and their
lengths may vary.

Our solution to the problem of elastic rule discovery consists of five steps
as shown in Figure 3 : converting numeric elements to symbol elements, Com-
paction, suffix tree construction, trimming infrequent nodes, rule extraction.

Converting numeric elements to symbol elements: We convert each nu-
meric element of data sequences into the symbol of the corresponding leaf node
of the TAH. The symbolized representation of Z is denoted as S(Z). For ex-
ample, a data sequence & = (3.4,3.0,3.7,2.3,2.1,4.3) is converted to S(Z) =
(C,C,C, B, B, D) according to the TAH in Figure 2.

Compaction: We convert the symbolized data sequence S(Z) into the compact
representation C(S(Z)) by replacing consecutive elements that have the same

A%

Data sequences L 'Qon.ve']rtzmg:: L Data sequences DI g Compact
of numeric elements - umenc elements. . of symbol elements O] ata sequences
to:symbol-elerents:: of symbol elements

J

. CoRule L Trmming . - Suffixtree
[Elastic rules J' ::éx_t_‘;a‘?t.io”.:”—[Rule tree]'"if?f'féq_l'lé_ﬁ_f 'n_o_'de;"—[Suffix tree]? Eonsici.

Fig. 3. Five steps for elastic rule discovery.

value with a single element of that value. This step is for considering the prop-
erty of elastic patterns. For example, S(Z) = (C,C,C, B, B, D, E, E) is converted
to C(S(&)) = (C, B, D, E). We use the notation X for C'(S(Z)).

Suffix tree construction: From the set of M converted data sequences X 1y e X M,

we build a suffix tree using the incremental disk-based suffix tree construction
algorithm [4]. Two suffix trees, representing two disjoint sets of data sequences,
can be merged to produce a single suffix tree by pre-order traversal of both suffix
trees and combining the paths corresponding to common subsequences. A suffix
tree for a large set of data sequences can be constructed by performing a series
of binary merges.

Trimming: We compute the support values of the nodes and trim out the
nodes whose support values are less than SU P,,;,. The support values of in-
ternal nodes are obtained by summing up the support values of their children
nodes. The support values of the leaf nodes are the same as the number of suf-
fixes represented by the leaf nodes. The trimmed suffix tree is called the rule tree.

Rule extraction We compute the confidence values of nodes and then ex-
tract rules. The expression for computing the confidence value of the node NV
is con fidence(N) = Support(N)/Support(PN) where PN is the parent node
of N. From the node N where the length of label (PN, N) is L, we extract L rules.

R; : label(rootNode, PN) — label(PN, N)
R, : label(rootNode, PN) o (label(PN,N)[1:1]) — label(PN,N)[2 : L]
R; : label(rootNode, PN) o (label(PN,N)[1 : 2]) — label(PN,N)[3 : L]

Ry, : label(rootNode, PN) o (label(PN,N)[1 : L — 1]) — label(PN,N)[L : L]

where label(PN, N)[p : q] is the subsequence of label(PN, N) including ele-
ments in positions p through ¢, and ‘e’ is the binary operator for concatenating
two sequences. If N is the root node, then label(rootNode, PN) becomes the
empty sequence (). The confidence of R; is the same as confidence(/N) while the
confidences of Ra, Rs, ..., and Ry, are 1. Figure 4 shows the part of a rule tree
and the rules extracted from the tree. The values in the nodes represent their

VI

support values. Instead of storing extracted rules separately, we keep the rule
tree as a compact representation of rules.

N1

50

confidence 15/50
confi dence 20/ 50
confidence 6/15
confidence 5/15
confidence 1
confidence 1

>
VVVVVY

o 0o
>OUO>>
EEEEEE
555555

6 5 20

(a) A part of a rule tree (b) Rules extracted from a rule tree

Fig. 4. A part of a rule tree and rules extracted from a rule tree.

4 Rule matching

Rules discovered from data sequences may be used to predict the future trend
of a target head sequence ¢ via the process of rule matching. In this section, we
present techniques to find matched rules and to derive the least relaxed rules.

4.1 Exact rule matching

The problem of exact rule matching is defined as follows: Given a rule tree, a type
abstraction hierarchy, and a target head sequence ¢, find the rules matched to ¢

This problem can be solved by conducting a sequential search over all the
stored rules with computation complexity O(Ng|q]) where Ng is the number of
rules and |g] is the length of ¢. However, the search time is reduced if there is an
index over the heads of rules. Instead of building a new index, we use the rule
tree as an index structure for exact rule matching. As a result, matched rules
can be found from the rule tree with complexity O(|q]). Our approach for exact
rule matching consists of two steps, the search step and the rule extraction step,
as discussed in the following subsections.

Search for exactly matched rule head: Using the rule tree as an index
structure, we can find the rule head F that is exactly matched to a target head
sequence. Algorithm 1 shows the exact matching algorithm RTI-E (Rule Tree In-
dex for Exact matching). Note that ¢'is converted to the compact representation
C(S(@)) before beginning the search process. We use the notation @ for C(S(q)).
The algorithm traverses the rule tree and returns a pair (IV, p) that represents
the matched rule head i = label(rootNode, PN) o (label(PN,N)[1 : p]). The

first call to the algorithm has two arguments: rootNode and Q).

VII

Algorithm: RTI-E (node N, target head sequence Q)

Visit the node NV;
Select the child node, CN, where label(N, CN) is matched to the prefix of §;
Remove the matched prefix from Q;
if é becomes empty then
| return a pair (CN, the length of a matched prefix);

else

| call RTI-E(CN, @);

Algorithm 1: Exact matching algorithm RTI-E

Rule extraction from exactly matched rule head: Using the relationship
between the exactly matched rule head and its following subsequences, we extract
the rules. Let us assume that RTI-E has returned the pair (N, p) and the length
of label(PN,N) is L. If p < L, then the matched rule is ‘label(rootNode, PN) e
(label(PN,N)[1 : p]) — label(PN,N)[p+ 1 : L] with confidence 1’. Otherwise,
the number of matched rules is the same as the number of children of N. For each
child node CN of N, the matched rule is ‘label(rootNode, N) — label(N,CN)
with confidence(CN)’.

4.2 Relaxed rule matching

The problem of relaxed rule matching is defined as follows: Given a rule tree, a
type abstraction hierarchy, and a target head sequence ¢, find the least relaxed rules
that cover ¢.

Among many relaxed rules covering ¢, we focus on finding the least relaxed
rules since they provide more specific information than others do. To find the
least relaxed rules, we need a distance function that measures the degree of
relaxation needed for the rule to cover ¢. Note that the rule head whose length
is not equal to |¢] may be stretched and relaxed to cover ¢. Therefore, the distance
function has to consider stretches of elements along the time axis. Our approach
for relaxed rule matching consists of two steps, the search step and the rule
extraction step, which will be discussed in the following subsections.

Relaxation-based time warping distance function: To measure the degree
of relaxation needed for the rule head h to cover ¢, we propose a relaxation-error
based time warping distance function Dgg(h,q), which is modified from an
original time warping distance function [12] where elements are assumed to have
numeric values and their distances are measured by Euclidean distance metric.

VIII

Definition 1. Given a rule head h and _a target head sequence d, o relaxation-
error based time warping distance Drg(h,q) is defined as follows:

DRE(Q:) =0

Dre(h,()) = Dre((),q) = oc. Dre(h,d2: -])

Dre(h,d) = dgre(h[1],q1]) + min Dre(h[2:-],d)
Drp(h2: -], q2: -]))

dre(h[1],d[1]) = RE(ComNode(h[1],d[1])) — RE(Node(h[1])).

RE(ComNode(R[1],4[1])) is the relaxation error of the lowest node contain-
ing both A[1] and ¢[1], and RE(Node(h[1])) is the relaxation error of the lowest
node containing h[1]. Therefore, drg (h[1],41]) is the relaxation error increase
induced by relaxing Node(h[1]) to ComNode(h[1], {[1]).

For example, let us consider the TAH shown in Figure 2. Because RE(Node(A))
is 0.01 and RE(ComNode(A, D)) (= RE(T)) is 0.68, dre(A, D) = 0.68—0.01 =
0.67. Dr(h,§) can be calculated efficiently by the dynamic programming tech-
nique [2] based on the recurrence relation r(z,y) (z = 1,2, ..., |k, y = 1,2, .., |§])-

The recurrence relation r(z, y) fills in the table of cumulative distances as the
computation proceeds. The final cumulative distance, r(|h|, |g]), is the degree of
relaxation needed for A to cover d- The mapping of elements that generates the
minimum distance can be traced backward in the table - choosing the previous
cells with the lowest cumulative distance. The recurrence relation r(z,y) for cal-
culating Drg(h, §) has computation complexity O(|ﬁ| |@]). Figure 5 shows the cu-
mulative distance table for computing Dgg(h = (C, A, E, D, A),§ = (C, E, A))
and the best mapping of elements. h is converted to R’ by relaxing the second
and the fourth elements to X and Y, respectlvely, and ¢'is converted q by repli-
cating the first and the second elements. Now, d is covered by R _The relaxation
error increase for converting A to A’ is 0.50 and, therefore Dgg(h,) = 0.50.

Search for the nearest rule head: To generate the least relaxed rules, we first
traverse the rule tree to find the rule head A that requires the least relaxatlon to
cover a target head sequence ¢. The similarity matching algorithm RTI-S (Rule
Tree Index for Similarity matching) is given in Algorithm 2. Note that a target
head sequence {'is converted to the compact representation ¢ (=C(S(q))) before
beginning the search process. The algorithm maintains three global variables
during its execution: the converted target head sequence Q, the nearest rule
head A found so far, and its distance MinDist from Cj The first call to the
algorithm has two arguments: rootNode and emptyTable.

The algorithm starts from the root node. When it visits a node, it inspects
each child node to find a nearer rule head and to determine if further going-
down the tree is necessary. Let us assume that the search algorithm examines
the child C'N of the node N. The first step is to build a cumulative distance table
for label(N, CN) (located on Y-axis) and (located on X-axis). If N is the root

IX

> >
A | 1.69| 1.17| 0.50 q=<C, E, A> q'=<C, C, E E, A>
D | 1.25 0]50 0.81
v

E | 0.88| 0.44| 0.88
A 0]44 0.67 | 0.47

v -> >
clo 0.47] 0.71 S h=<C, A, E, D, A> h'=<C, X, E, Y, A>

h
C E A

(a) Cumulative distance table for computing (b) Mapping of elements (c) Mapping (_)f elements aftgr
DRE(<C,A.E,D,A> <C,E,A>) time warping and relaxation

—

Fig. 5. Cumulative distance table for Drr(h = (C, A, E, D, A),§= (C, E, A)) and the
mapping of elements that generates the minimum distance.

Algorithm: RTI-S (node N, cumulative distance table T')

Visit the node IV;
for each child node CN do
Build a new cumulative distance table newT, by adding rows corresponding
to label(N,CN) on T
Find a nearer rule head from newT and update MinDist;
If further going-down the tree is necessary, call RTI-S(CN, newT);

Algorithm 2: Similarity matching algorithm RTI-S

node, the cumulative distance table is built from the bottom. Otherwise, it is
built by augmenting new rows on the top of the cumulative distance table that
has been accumulated from the root node to N. The next step is to examine
the last columns of newly added rows to find a nearer rule head. If there is a
column having the distance value less than MinDist, the nearest rule head h
is changed and MinDist is also updated accordingly. Remember that h and
MinDist are global variables. The final step is to check all columns of the last
row to determine whether or not further going-down the tree is needed. If at
least one column of the last row has a value less than MinDist, we continue
traverse down the tree. Otherwise, the search moves to the next child of N.

The least relaxed rules can also be found by a sequential scanning over all
the rules with computation complexity O(NgH|Q|) where Ng is the number of
rules and H is the average length of rule heads. RTI-S has the same complexity
but it reduces the search time by applying the branch-pruning approach [11] and
by allowing the cumulative distance table to be shared by rule heads that have
the same prefix.

Rule extraction from the nearest rule head: After finding the rule head
h most similar to (), we generate the least relaxed rules from h and its following

X

subsequences. This step begins with extracting the rules from h using the method
explained in Section 4.1. Then, we convert symbols of rule heads and bodies into
their relaxed symbols according to the mapping of h and Q , and get the compact
representations of rules. Finally, the rules having the same head and body are
merged and their confidence values are recomputed.

For example, let us assume that we extract three rules from h: “‘ABD — BG
with confidence 20/50’, ‘ABD — AG with confidence 10/50°, and ‘ABD — C
with confidence 10/50. If both A and B are to be relaxed to X, the rules are
converted as: ‘XD — X @G with confidence 20/50’, ‘XD — X G with confidence
10/50’, and ‘X D — C with confidence 10/50’. After merging the rules that have
the same head and body, we obtain the final rules: ‘XD — X G with confidence
30/50’ and ‘XD — C with confidence 10/50’.

5 Experiments

To study the effectiveness of our proposed methods, we performed several exper-
iments on the synthetic data sequences. The expression for generating the data
sequence was defined as #;[p] = Z;[p— 1]+ Z, where Z, (p = 1,2,...) are indepen-
dent, identically distributed random variables. We used the relative minimum
support value RSU P,,;,, to control the number of discovered rules.

IN
S

RSUPMIN=0.01 —a— "RSUPMIn=0,01_—
RSUPmMIn=0.001 —6— 5
RSUPMIiN=0.0001

W ow
S a

N
a

total elapsed time (sec)
RN
(5 o

total elapsed time (sec)

=
o

o «

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 100 200 300 400 500 600 700 800 900 1000
number of data sequences averege length of data sequences

Fig. 6. Total elapsed time for discov- Fig. 7. Total elapsed time for discov-
ering elastic rules with selected num- ering elastic rules with selected aver-
bers of data sequences. age length of data sequences.

5.1 Rule discovery

We used the total elapsed time required to discover rules as a performance mea-
sure of our rule discovery algorithm. First, we increased the number of data
sequences from 100 to 10,000 while keeping the average length of data sequences
constant at 200. Then, we changed the average length of sequences from 100 to
1,000 while maintaining the number of sequences at 500. As shown in Figures 6

XI

and 7, the total elapsed times increase linearly as the number of and the aver-
age length of data sequences grow. The figures also show that the linearity is
maintained regardless of changing RSU P,,;, values.

5.2 Rule matching

To evaluate the efficiency of the proposed rule matching algorithms, RTI-E and
RTI-S, we compared their execution times with that of sequential scanning. For
our experiments, we generated a binary TAH from 500 data sequences whose
average length is 400. With the threshold T}, set at 6,000, which is the maxi-
mum number of elements that can be contained in a leaf node, the TAH has 44
internal nodes and 45 leaf nodes.

Figure 8 shows the average search times of RTI-E and SS(Sequential- Scanning)-
based exact matching algorithm for a different number of rules. The search times
of SS-based exact matching algorithm increase linearly with the number of rules
while the search times of RTI-E remain relatively constant. Figure 9 shows the
average search times of RTI-S and SS-based similarity matching algorithm. The
performance gain of RTI-S increases as the number of rules increases.

N
S

" SS-based exact mafching Ta SS-based simiiarity rhatchihg —a—
RTI-E RTI-S

—

~
W ow
S a

N
a

[
o

=
o

total elapsed time (sec)
)

total elapsed time (sec)
N
o

-
o «

0 2000 4000 6000 8000 10000 12000 14000 16000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of rules number of rules

Fig. 8. Performance comparison be- Fig.9. Performance comparison be-
tween sequential scanning and RTI-E tween sequential scanning and RTI-S
for exact rule matching. for relaxed rule matching.

6 Conclusion

In this paper, we have investigated the problems of discovering and matching
elastic rules. The contributions of our works are: 1) proposing the concepts of
elastic patterns and elastic rules for data sequences with different sampling rates,
2) presenting an efficient rule discovering algorithm which converts data se-
quences into succinct forms and then builds a rule tree, 3) introducing the idea of
rule relaxation and suggesting the relaxation-error based time warping distance,
and 4) presenting effective algorithms for exact and relaxed rule matchings. Ex-
periments on synthetic data sequences revealed that: 1) our rule discovering

XII

algorithm is linear to both the total number of and the average length of data
sequences, and 2) our exact and relaxed rule matching algorithms are a few
orders of magnitude faster than sequential scanning.

References

1. R. Agrawal, and R. Srikant, “Mining Sequential Patterns”, Proc. IEEE ICDE, 1995.

2. D. J. Berndt, and J. Clifford, “Finding Patterns in Time Series: A Dynamic
Programming Approach”, Advances in Knowledge Discovery and Data Mining,
AAATI/MIT, 1996.

3. P. S. Bradley, U. M. Fayyad, and O. L. Mangasarian, “Data Mining: Overview and
Optimization Opportunities”, Microsoft Research Report MSR-TR-98-04, 1998.

4. P. Bieganski, J. Riedl, and J. V. Carlis, “Generalized Suffix Trees for Biological Se-
quence Data: Applications and Implementation”, Proc. Hawaii Int’l Conf. on System
Sciences, 1994.

5. W. W. Chu, and K. Chiang, “Abstraction of High Level Concepts from Numer-
ical Values in Databases”, Proc. of AAAI Workshop on Knowledge Discovery in
Databases, 1994.

6. W. W. Chu, A. F. Cardenas, and R. K. Taira, “KMeD: a Knowledge-based Multi-
media Medical Distributed Database System”, Information Systems, Vol.20, No.2,
Premagon-Press/Elsevier Science, 1995.

7. G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule Discovery from
Time Series”, Proc. International Conference on Knowledge Discovery and Data Min-
ing, 1998.

8. U. M. Fayyad, “Mining Databases: Toward Algorithms for Knowledge Discovery”,
Data Engineering Bulletin 21(1), 1998.

9. H. Mannila, and H. Toivonen, “Discovering Generalized Episodes using Minimal Oc-
currences”, Proc. International Conference on Knowledge Discovery and Data Min-
ing, 1996.

10. H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovering Frequent Episodes
in Sequences”, Proc. International Conference on Knowledge Discovery and Data
Mining, 1995.

11. S. Park, W. W. Chu, J. Yoon, and C. Hsu, “Efficient Searches for Similar Subse-
quences of Different Lengths in Sequence Databases”, Proc. IEEE ICDE, 2000.

12. L. Rabinar, and B. Juang. Fundamentals of Speech Recognition, Prentice Hall,
1993.

13. R. Srikant, and R. Agrawal, “Mining Sequential Patterns: Generalizations and
Performance Improvements”, Proc. International Conference on Eztending Database
Technology, 1996.

14. G. A. Stephen, String Searching Algorithms, World Scientific Publishing, 1994.

15. J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, and K. Zhang,
“Combinatorial Pattern Discovery for Scientific Data: Some Preliminary Results”,
Proc. ACM SIGMOD, 1994.

