
Fast Retrieval of Similar Subsequences in Long Sequence Databases

Sanghyun Park, Dongwon Lee, Wesley W. Chu
Department of Computer Science

University of California, Los Angles, California 90095 USA
fshpark,dongwon,wwcg@cs.ucla.edu

Abstract

Although the Euclidean distance has been the most pop-
ular similarity measure in sequence databases, recent tech-
niques prefer to use high-cost distance functions such as the
time warping distance and the editing distance for wider ap-
plicability. However, if these distance functions are applied
to the retrieval of similar subsequences, the number of sub-
sequences to be inspected during the search is quadratic to
the average length �L of data sequences. In this paper, we
propose a novel subsequence matching scheme, called the
aligned subsequence matching, where the number of subse-
quences to be compared with a query sequence is reduced
to linear to �L. We also present an indexing technique to
speed-up the aligned subsequence matching using the sim-
ilarity measure of the modified time warping distance. The
experiments on the synthetic data sequences demonstrate
the effectiveness of our proposed approach; ours consis-
tently outperformed the sequential scanning and achieved
up to 6.5 times speed-up.

1. Introduction

Similarity search in sequence databases plays an im-
portant role in many application domains such as infor-
mation retrieval and data mining. Recently, many tech-
niques [1, 6, 7] have been proposed to support the fast re-
trieval of similar sequences using the Euclidean distance
metric. However the Euclidean distance metric has the fol-
lowing problems: 1) it cannot be applied to sequences of
different lengths or different sampling rates, and 2) it is very
sensitive to small distortion on the time axis. To remedy
these problems, [4] used the modified editing distance and
[14] used the time warping distance, concentrating on the
whole sequence matching.

However, if we use the editing distance or the time
warping distance for subsequence matching, the number of
subsequences to be inspected during the search becomes
quadratic to the average length �L of data sequences. Thus,

when �L is very large, we may suffer from severe perfor-
mance degradation.

In this paper, we propose a novel sequence matching
scheme, called the aligned subsequence matching, where
the number of subsequences to be compared with a query
sequence is reduced to O(�L). In aligned subsequence
matching, sequences are divided by piece-wise segments
and only those subsequences starting and ending at segment
boundaries are inspected during the search. We also present
an indexing technique to support the fast retrieval of sim-
ilar aligned subsequences using the similarity measure of
the modified time warping distance. Our indexing tech-
nique is summarized as follows: First, we extract a feature
vector from each segment and group similar feature vec-
tors together. Then, we convert each segment into a sym-
bol of the corresponding group. Finally, from sequences
of symbols, we construct the generalized suffix tree (GST).
At search time, the GST is traversed to find candidate sub-
sequences which are possibly with the distance tolerance
from the query sequence. Aligned subsequences that are ac-
tually within the distance tolerance are obtained after post-
processing.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide a brief overview of the related work on
sequence matching problems. Section 3 contains the def-
inition and the similarity measure of aligned subsequence
matching. The indexing construction method and the query
processing algorithm are presented in Sections 4 and 5, re-
spectively. Finally, our proposal is verified by the experi-
mental results in Section 6 followed by concluding remarks
in Section 7.

2. Related work

Several approaches for fast retrieval of similar se-
quences have been recently proposed. In [1], sequences
are converted into the frequency domain by the Dis-
crete Fourier Transform and are subsequently mapped into
multi-dimensional points that are managed by an R�-tree.
This technique can be extended to locate similar subse-

quences [6]. Since both approaches are based on the Eu-
clidean distance metric, sequences of different lengths or
different sampling rates cannot be matched.

The access methods of [4, 14, 8] permit the matching
of sequences of different lengths. [4] presents the modified
version of edit distance, considering two sequences match-
ing if a majority of elements match. In [14], the time warp-
ing distance is used as a similarity measure with the two-
step filtering process: a FastMap index filter followed by a
lower-bound distance filter. Since the modified editing dis-
tance and the time warping distance are expensive, both [4]
and [8] focus on whole sequence matching. [8] presents an
access method for subsequence matching with the similar-
ity measure of the time warping distance. Using a general-
ized suffix tree as an index structure and two lower-bound
distance functions as index filters, [8] retrieves similar sub-
sequences without false dismissals. However, the computa-
tion complexity of [8] is quadratic to the average length of
data sequences.

3. Aligned subsequence matching

We assume that sequences consist of a series of real num-
bers. We denote a sequence hx1; :::; xLi as ~x. Table 1
shows a list of notations used in the paper. To reduce the
number of subsequences to be compared with a query se-
quence, in this section, we suggest the aligned subsequence
matching. In the aligned subsequence matching, sequences
are divided into piece-wise segments and only those sub-
sequences ~x[p:r] satisfying the following conditions are in-
spected during the search:

1. p is the starting position of a segment.

2. r is the ending position of the same segment or its fol-
lowing segments.

3. The number of segments in ~x[p : r] is the same as that
of segments in a query sequence.

We call a subsequence satisfying the first two conditions
an aligned subsequence. Let us use the notation C for the
average number of elements in a segment. Then there are
j~xj

C
segments in a data sequence ~x and j~qj

C
segments in a

query sequence ~q. Therefore, in a data sequence ~x, the
number of aligned subsequences that have j~qj

C
segments is

j~xj

C
� j~qj

C
+ 1. Thus the number of subsequences satisfying

the above three conditions is linear to the length of a data
sequence.

Now, we describe the method to get the segmented repre-
sentation of a sequence and the distance function to measure
similarities of aligned subsequences.

3.1. Segmentation

To obtain a series of piece-wise segments from a se-
quence, we take the following segmentation approach:
First, the algorithm scans a sequence and records all the
peak points. ~x[p] is a peak point if ~x[p�1] � ~x[p] � ~x[p+1]

or ~x[p � 1] � ~x[p] � ~x[p + 1]. Then, the algorithm finds
the peak point that has the largest deviation from the inter-
polation line connecting the two end points of a sequence.
If the found peak point satisfies the semantic constraints
such as the minimum interval constraint and the minimum
value-change constraint, the sequence is divided into two
segments at that peak point. The algorithm is executed re-
cursively until some threshold is exceeded. For details, refer
to [9]. Our segmentation algorithm is an improved version
of the one proposed in [11] in two aspects:

1. Let L be the number of elements in a sequence and
P be the number of peak-point elements in the same
sequence. Our approach has the algorithmic complex-
ity O(L + P 2) while the approach in [11] is O(LP).
When L is very large and P � L (which is very likely
the case in practice), ours is more efficient than the al-
gorithm in [11].

2. Ours considers semantic constraints of a sequence. For
instance, in stock trading data sequences, if only seg-
ments whose change rates are more than 5% are of in-
terest, then our algorithm can filter out those segments
whose increase or decrease rates are less than 5% at
early stage. Semantic constraints can also be used to
eliminate noises.

We denote the sequence of segments obtained from ~x as
~xS . The length of ~xS is much smaller than that of ~x. The
compaction ratio (C) can be expressed as C = j~xj=j~xS j. C
is also considered as the average number of elements in a
segment.

Example 1: Let us consider a data sequence ~x =
h4; 5; 8; 8; 8; 8; 9; 11; 8; 4; 3; 7; 10i. ~x is segmented to ~xS

= hh4; 5; 8; 8; 8; 8; 9; 11i; h8; 4; 3i; h7; 10ii. Then ~xS [1] =
h4; 5; 8; 8; 8; 8; 9; 11i, ~xS [2] = h8; 4; 3i, and ~xS [3] = h7; 10i.
Since j~xj = 13 and j~xS j = 3, C = 13/3 = 4.3. �

3.2. Similarity measure

Similarity measures for aligned subsequences are based
on their segmented representations. Since the lengths of
segments to be compared may be different, we propose to
use the modified time warping distance as a similarity mea-
sure. Given two aligned subsequences ~x and ~y, the distance
function is defined as follows:

Dsim(~x; ~y) =

NX
i=1

Dtw(~x
S [i]; ~yS[i])

Notation Description

M number of data sequences in a database.
" distance tolerance given by user.
hi empty sequence.
~x; ~y sequences of real numbers.
j~xj number of elements in ~x.
~x[p] p-th element of ~x.

~x[p : r] subsequence of ~x containing elements from p to r.
~x[p : �] suffix of ~x starting from p.
~xS sequence of segments derived from ~x.
~xF sequence of feature vectors derived from ~x.
~xC sequence of symbols derived from ~x.
~�; ~� sequences of ranges.
~�; ~� segments extracted from sequences of real numbers
A;B symbols representing a set of segments

Table 1. List of notations.

where N is the number of segments contained in ~x and
~y, and Dtw(~xS [i]; ~yS[i]) is the time warping distance be-
tween two segments. This formula can be rephrased as “the
distance between two aligned subsequences is the sum of
the time warping distances between each pair of segments”.
The time warping distance between two segments, ~� and ~�,
is defined as follows [10]:

Dtw(hi; hi) = 0

Dtw(~�; hi) = Dtw(hi; ~�) =1

Dtw(~�; ~�) = j~�[0]� ~�[0]j +

min

8><
>:

Dtw(~�; ~�[2 : �])

Dtw(~�[2 : �]; ~�)

Dtw(~�[2 : �]; ~�[2 : �])

Dtw(~�; ~�) can be efficiently calculated with computa-
tion complexity O(j~�jj~�j) using a dynamic programming
technique based on the recurrence relation [2].

Example 2: Suppose we want to find all the
aligned subsequences of a data sequence ~x =
h4; 5; 8; 8; 8; 8; 9; 11; 8; 4; 3; 7; 10i that are similar to a
query sequence ~q = h3; 1; 0; 1; 3i within a distance toler-
ance " = 25. Further suppose that ~x and ~q are segmented
to ~xS = hh4; 5; 8; 8; 8; 8; 9; 11i; h8; 4; 3i; h7; 10ii and ~qS =
hh3; 1; 0i; h1; 3ii, respectively. Since ~xS and ~qS have 3 and
2 segments, respectively, sequence ~qS = h~qS[1], ~qS[2]i
can possibly be compared with only two combinations of
segments of ~xS ; h~xS[1], ~xS[2]i and h~xS[2], ~xS[3]i. The
distances can be computed as follows:

� Dsim(h4; 5; 8; 8; 8; 8; 9; 11; 8; 4; 3i; h3; 1; 0; 1; 3i)
= Dtw(~x

S [1]; ~qS[1]) +Dtw(~x
S [2]; ~qS [2])

= 44 + 8 = 52.

� Dsim(h8; 4; 3; 7; 10i,h3; 1; 0; 1; 3i)
= Dtw(~xS [2],~qS[1]) + Dtw(~xS[3],~qS[2])
= 11 + 13 = 24.

Since only Dsim(h4; 3; 2; 1; 0; 1; 3i,h3; 1; 0; 1; 3i) has a
distance within the given ", the aligned subsequence that
matches a query sequence ~q is the h8; 4; 3; 7; 10i. �

4. Index construction

Although the aligned subsequence matching is signifi-
cantly faster than the conventional subsequence matching
(i.e., linear vs. quadratic), we can further improve the search
time by adopting a sophisticated indexing method. Figure 1
shows the three steps of our index construction method.

4.1. Feature extraction

We extract a set of representative features, called a fea-
ture vector, from each segment. For a segment ~�, the 5-
tuple feature vector is represented as (L; V1; VL; �+; ��),
where L = j~�j, V1 = ~�[1], VL = ~�[L], and �+ and �� are
the positive and the negative maximum deviations from the
interpolation line connecting the two end points (1, V1) and
(L, VL), respectively. For instance, consider three segments
~�1 = h4,5,8,8,8,8,9,11i, ~�2 = h8,4,3i, ~�3 = h7,10i. Their
corresponding feature vectors are shown in Table 2.

4.2. Categorization

We generate a set of categories from feature vectors
obtained in the previous step. Using the categoriza-
tion method of multiple-attribute type abstraction hierarchy
(MTAH [5]), we classify the similar feature vectors into the

Sequences of
real numbers

Feature
Extraction

Sequences of
feature vectors Categorization Sequences of

symbols
Suffix tree

construction
Generalized
suffix tree

Figure 1. Three steps for index construction.

Segment
Feature Vector

Interpolation line
L V1 VL �+ ��

~�1 = h4,5,8,8,8,8,9,11i 8 4 11 maxf0,0,2,1,0,0,0,0g= 2 maxf0,0,0,0,0,1,1,0g = 1 y = x + 3
~�2 = h8,4,3i 3 8 3 maxf0,0,0g = 0 maxf0,1.5,0g = 1.5 y = –2.5x + 10.5
~�3 = h7,10i 2 7 10 maxf0,0g = 0 maxf0,0g = 0 y = 3x + 4

Table 2. Feature vectors from three segments.

same category and assign a unique symbol to each category.
MTAH is a data-driven multiple-level categorization hier-
archy that uses relaxation error as a goodness measure of
categories. MTAH has the following benefits: 1) The al-
gorithm considers both value and frequency distributions,
thus generating more accurate categories than equal-length
interval categorization methods; and 2) MTAH is easier to
implement than maximum-entropy categorization methods.

Categories are represented as C = ([L:lb; L:ub],
[V1:lb; V1:ub], [VL:lb; VL:ub], [�+:lb; �+:ub],
[��:lb; ��:ub]). Table 3 is an example that shows
three category symbols and their feature ranges.

After obtaining a set of categories, we convert every seg-
ment to a symbol of the corresponding category. Thus,
if the feature vector from a segment ~� is included in the
symbol A, ~� is replaced with A. For instance, ~xS =
hh4; 5; 8; 8; 8; 8; 9; 11ii, h8; 4; 3i, h7; 10ii can be converted
to ~xC = hA;B;Ci according to Table 3.

4.3. Suffix tree construction

Once we have converted sequences of real numbers to
sequences of symbols, we propose to use a generalized suf-
fix tree (GST [3, 13]) as an index structure for fast aligned
subsequence matching. A GST has the benefits such that 1)
It is a good structure especially for subsequence matching
since all possible suffixes of the given sequence is main-
tained in a GST and 2) It does not assume any geometry
or any distance function. Thus, it guarantees the absence
of false dismissals even with the time warping distance if
lower-bound distances are used to filter out dissimilar sub-
sequences in index space.

Let us present the definition and the internal structure of
a GST. A suffix tree [12] is a compact representation of a
trie corresponding to the suffixes of a given string where
all nodes with one child are merged with their parents. A
GST is an extension of the suffix tree allowing for multiple
sequences to be stored in the same tree. ~x[p : �] is ex-

pressed by a leaf node labeled with (id(~x); p), where id(~x)
is a unique identifier for the given sequence ~x and p is the
offset from which the suffix starts. The edges are labeled
with subsequences such that the concatenation of the edge
labels on the path from the root to the leaf (id(~x); p) be-
comes ~x[p : �]. We use the notation label(Ni; Nj) for the
concatenated labels on the path from Ni to Nj .

To build a suffix tree from multiple sequences, we use
an incremental disk-based GST construction method pro-
posed in [3]. Two GSTs, representing two disjoint sets of
sequences, are merged to produce a single GST by pre-order
traversal of both GSTs and combining the paths correspond-
ing to common subsequences. The construction of GST for
M data sequences whose average length is �L has algorith-
mic complexity O(M �L) [12].

5. Query processing

Given a set of data sequences, the query sequence ~q and
the distance tolerance ", we want to find all aligned subse-
quences ~x satisfying the following conditions:

1. The number of elements in ~xS is the same as that of
elements in ~qS (i.e., j~xS j = j~qS j).

2. The modified time warping distance between ~x and ~q

is within " (i.e., Dsim(~x; ~q) � ").

In this section, we describe our query processing algo-
rithm SearchSubSequence that consists of three steps
(Figure 2): pre-processing, index searching and post-
processing.

5.1. Pre-processing

The query sequence ~q is converted to the sequence of
segments ~qS . Then, a 5-tuple feature vector described in
Section 4 is extracted from each segment. Finally, each fea-
ture vector is replaced with a symbol of the corresponding

Symbol L:lb L:ub V1:lb V1:ub VL:lb VL:ub �+:lb �+:ub ��:lb ��:ub

A 6 8 3 5 10 13 1.5 2.5 0 2
B 2 3 7 9 2 4 0 1.5 0.5 3
C 2 3 7 9 4 10 0 1.5 0 1.5

Table 3. Three category symbols and their feature ranges.

Query sequence
of real numbers

Pre-
processing

Query sequence
of symbols

Index-
searching Set of candidates Post-

processing answers

Categorization
Hierarchy

Generalized
suffix tree Data sequences

Figure 2. Three steps of query processing algorithm SearchSubSequence

category using the categorization hierarchy built at the stage
of index construction. The output of this step is the query
sequence of symbols ~qC .

5.2. Index-searching

Depth-first traversal is performed on a GST to find a set
of candidates whose distances to the query sequence are
possibly within the distance tolerance ".

Our index-searching algorithm IndexSearch is shown
in Algorithm 1. For simpler description, we assume that
each edge is labeled with a single symbol. The algorithm
starts with three inputs: root node N0, the query sequence
of symbols ~qC , and the distance tolerance ".

When the algorithm visits a node, it computes the dis-
tance between each child label and the first element of ~qC

using the distance function Dtw�lb() that is designed to
satisfy the lower-boundness [1]. The detail description of
Dtw�lb() is given later in this subsection. Let the distance
between the child label and the first element of ~qC be dist.
If dist is larger than ", the algorithm discards the child node
and inspects the next child node. Otherwise, either one of
the following operations is executed according to the length
of ~qC .

1. When j~qC j = 1, the concatenated labels on the path
from the root node to the child node is inserted into a
set of candidates.

2. When j~qC j > 1, the algorithm IndexSearch is called
recursively with the modified three inputs: the child
node, the query subsequence of symbols ~qC [2 : �],
the adjusted distance tolerance "� dist.

Input : node N , query ~qC , distance-tolerance "
Output : candSet

candSet �;
CN GetChildren(N);

for i 1 to j CN j do
dist Dtw�lb(label(N;CNi); ~q

C [1]);
if dist � " then

if j~qC j = 1 then
insert label(rootNode; CNi) into cand-
Set;

else
candSet candSet [IndexSearch(CNi,
~qC [2 : �], "� dist);

return candSet;

Algorithm 1: IndexSearch

The function Dtw�lb() defines the distance of two sym-
bols. Before presenting the definition of Dtw�lb(), we first
describe the method to derive the information on segments
included in the specific symbol.

5.2.1. Converting symbols to sequences of ranges. Given
a segment (and thus its feature vector), the corresponding
symbol can be easily found by looking up the mapping table
that stores the lower and the upper bound values of each fea-
ture. However, going the other way around, given a symbol,
it is difficult to find out all segments included in the sym-
bol without scanning all sequences contained in a database.
Nevertheless, using the bound-values of each feature, we

still extract the following information on all segments in-
cluded in the symbol.

� possible length range

� possible value range for each element

That is, given a symbol A, we can derive the sequence
of ranges ~�A = h(lb1; ub1); :::; (lbH ; ubH)i where H is
the maximum length (A:L:ub) of segments included in A.
Then ~�A[1 : r] represents all segments of A that have the
length of r (A:L:lb � r � A:L:ub). Let minIP (i) and
maxIP (i) be the minimum and the maximum interpolation
values of i-th element, respectively. Then, possible value
range of each element, lbi and ubi, is computed as follows:
(A is omitted for briefness.)

lbi =

8<
:

V1:lb (i = 1)
minIP (i)� ��:ub (1 < i < H)
VL:lb (i = H)

ubi =

8<
:

V1:ub (i = 1)
maxIP (i) + �+:ub (1 < i < H)
VL:ub (i = H)

Example 3: Let us compute the sequence of ranges
~�B for the symbol B in Table 3. The maximum
length of ~�B is 3 since L:ub = 3. Therefore, ~�B =
h(lb1; ub1); (lb2; ub2); (lb3; ub3)i. By using the above for-
mula, (lb1; ub1) = (7; 9) and (lb3; ub3) = (2; 4) can be
easily computed. The computation of (lb2; ub2) is more
complicated. lb2 = minIP (2) � ��:ub = 4:5 � 3 = 1.5.
ub2 = maxIP (2) + �+:ub = 6:5 + 1:5 = 8. Thus, ~�B
= h(7; 9); (1:5; 8); (2; 4)i. This can be interpreted as ”The
segments included in the symbol B can have starting value
between 7 and 9, and ending value between 2 and 4. Also
they may have intermediate value between 1.5 and 8. �

5.2.2. Modified similarity measures. Since the modified
time warping distance function defined in Section 3 is based
on sequences of segments, it is not directly applicable to the
index-searching algorithm IndexSearch which operates on
sequences of symbols. To remedy this problem, we intro-
duce three distance functions.

� Dsr�lb(~�; ~�) computes the lower-bound distance be-
tween two sequences of ranges, ~� and ~�.

� Dtw�lb(A;B) computes the lower-bound distance be-
tween two symbols, A and B.

� Dsim�lb(~x; ~y) computes the lower-bound distance be-
tween two aligned subsequences, ~x and ~y.

Let us first define the lower-bound distance function for
sequences of ranges. Given two sequences of ranges ~� and
~�, the lower-bound distance function Dsr�lb(~�; ~�) is de-
fined as follows:

Dsr�lb(hi; hi) = 0

Dsr�lb(~�; hi) = Dsr�lb(hi; ~�) =1
Dsr�lb(~�; ~�) = Dsr�lb(~�[1]; ~�[1]) +

min

8<
:
Dsr�lb(~�; ~�[2 : �])
Dsr�lb(~�[2 : �]; ~�)
Dsr�lb(~�[2 : �]; ~�[2 : �])

Drg(�; �) =

8<
:

0 (� and � overlap)
�:lb� �:ub (�:ub < �:lb)
�:lb� �:ub (�:lb > �:ub)

where � and � are value ranges corresponding to ~�[1]

and ~�[1], respectively. A value range is denoted as [lb; ub].
Dsr�lb(~�; ~�) returns the possible smallest distance between
two segments; one segment included in ~� and the other seg-
ment included in ~�.

Now, let us define the lower-bound distance function for
two symbols. Let ~�A and ~�B be the sequences of ranges de-
rived from two symbols A and B, respectively. Then, given
two symbols A and B, the lower-bound distance function
Dtw�lb(A;B) is defined as follows:

Dtw�lb(A;B) = minf8i8j(Dsr�lb(~�A[1 : i]; ~�B [1 : j]))g

where A:L:lb � i � A:L:ub and B:L:lb � j � B:L:ub.
Thus, the distance between symbols A and B can be con-
sidered as the possible smallest distance between two seg-
ments; one segment in any sequences of ranges derived
from A and the other segment in any sequences of ranges
derived from B.

Having defined the distance function for symbols, we
now define the lower-bound distance function for two
aligned subsequences. Give two aligned subsequences, ~x
and ~y, the lower-bound distance function Dsim�lb(~x; ~y) is
defined as follows:

Dsim�lb(~x; ~y) =

NX
i=1

Dtw�lb(~x
C [i]; ~yC [i])

where N is the number of elements in ~xC and ~yC . This
formula can be rephrased as ”the lower-bound distance be-
tween two aligned subsequences is the sum of the lower-
bound distance between each pair of symbols”.

Theorems 1 and 2 state the lower-boundness ofDtw�lb()

and Dsim�lb(), respectively. Based on these two theorems,

we can guarantee that the index-searching algorithm In-
dexSearch does not generate false dismissals.

Theorem 1: (Lower-Boundness of Dtw�lb())
For any two segments ~� and ~�, and their corresponding
symbols A and B, the following inequalities holds:

Dtw�lb(A;B) � Dtw(~�; ~�)

Proof: The proof is given in [9]. �

Theorem 2: (Lower-Boundness of Dsim�lb())
For any two aligned subsequences, ~x and ~y, the following
inequalities holds:

Dsim�lb(~x; ~y) � Dsim(~x; ~y)

Proof: The proof is given in [9]. �

5.3. Post-processing

For each candidate answer obtained from the previous
step, the actual aligned subsequences are retrieved from a
database and their distances from the query sequence are
computed using the modified time warping distance func-
tion Dsim(). Then aligned subsequences that are actually
within the distance tolerance are reported as final answers.

5.4. Analysis of the algorithms

Let �L be the average length of the data sequences, and C
be the average number of elements in segments (i.e., com-
paction ratio). Let us first examine the complexity of se-
quential scanning.

The computation complexity for calculating the time
warping distance of two segments is O(C2). The com-
plexity for measuring the modified time warping distance
between a query sequence and an aligned subsequence is

O(
C2

j~qj

C
) = O(Cj~qj). Since the average number of the

aligned subsequences with j~qj

C
segments in a data sequence

is (
�L
C
� j~qj

C
+1), the complexity for processingM sequences

is O(M j~qj(�L � j~qj + C)). If �L � j~qj, the complexity be-
comes O(M j~qj�L).

Now, let us consider the complexity of the proposed
query processing algorithm SearchSubSequence. The
complexity for computing Dtw�lb() is the same as Dtw(),
but is reduced toO(1) if we pre-compute the distances of all
pair of symbols and keep them in table. Then the complex-
ity of SearchSubSequence isO(

Mj~qj(�L�j~qj+C)

C2R
+NCj~qj)

where R (� 1) is the reduction factor saved by sharing
edges of the GST and N is the number of the aligned sub-
sequences requiring post-processing. If �L � j~qj, the com-

plexity becomes O(
M �Lj~qj

C2R
+NCj~qj).

6. Experimental Results

We used a dataset from UC Irvine KDD Archive
(http://kdd.ics.uci.edu) for testing. The dataset, called
“Pseudo Periodic Synthetic Time Series”, is specifically
designed for testing indexing schemes in time series
databases. The actual sequence is generated by following
function:

~x =

7X
i=3

1

2i
sin(2�(22+i + rand(2i))~t)

where 0 � ~t � 1. We generated 90 sequences (each is
10,000-datapoints) out of the original 9 sequences and ran-
domly extracted query sequences from the 10-th sequence.
Figure 3 shows the experimental results. Our scheme con-
sistently outperformed the sequential scanning and achieved
up to 6.5-time speed-up (653%).

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

T
ot

al
 E

la
ps

ed
 T

im
e

(s
ec

)

distance tolerance

SequentialScan
SearchSubSequence

Figure 3. Performance comparison between
SequentialScan and SearchSubSequence algo-
rithms.

7. Conclusion

In this paper, we proposed the aligned subsequence
matching whose running time is linear to the total number
of and the average length of data sequences. To speed up
the aligned subsequence matching, we also presented an ef-
ficient indexing method that is based on the generalized suf-
fix tree (GST) and lower-bound distance functions.

The contributions of our works are: 1) the aligned subse-
quence matching and its similarity measure, 2) the efficient
and systematic segmentation algorithm, 3) the compact in-
dex construction method using feature extraction and cate-
gorization, and 4) the effective query processing algorithm
based on lower-bound distance functions.

References

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity
search in sequence databases. In Proc. FODO, 1993.

[2] D. J. Berndt and J. Clifford. Finding patterns in time se-
ries. In Advances in Knowledge Discovery and Data Mining.
AAAI/MIT, 1996.

[3] P. Bieganski, J. Riedl, and J. V. Carlis. Generalized suffix
trees for biological sequence data: Applications and imple-
mentation. In Proc. Hawaii Int’l Conf. on System Sciences,
1994.

[4] T. Bozkaya, N. Yazdani, and M. Ozsoyoğlu. Matching
and indexing sequences of different lengths. In Proc. ACM
CIKM, 1997.

[5] W. W. Chu and K. Chiang. Abstraction of high level con-
cepts from numerical values in databases. In Proc. AAAI
Workshop on Knowledge Discovery in Databases, 1994.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In Proc.
ACM SIGMOD, 1994.

[7] D. Q. Goldin and P. C. Kanellakis. On similarity queries for
time-series data: Constraint specification and implementa-
tion. In Proc. Constraint Programming, 1995.

[8] S. Park, W. W. Chu, J. Yoon, and C. Hsu. Efficient searches
for similar subsequences of different lengths in sequence
databases. In Proc. IEEE ICDE, 2000.

[9] S. Park, D. Lee, and W. W. Chu. Fast retrieval of simi-
lar subsequences in long sequence databases. Technical re-
port, University of California, Los Angele, UCLA-CS-TR-
990028, 1999.

[10] L. Rabinar and B.-H. Juang. Fundamentals of Speech
Recognition. Prentice Hall, 1993.

[11] H. Shatkay and S. B. Zdonik. Approximate queries and rep-
resentations for large data sequences. In Proc. IEEE ICDE,
1994.

[12] G. A. Stephen. String Searching Algorithms. World Scien-
tific Publishing, 1994.

[13] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro,
D. Shasha, and K. Zhang. Combinatorial pattern discov-
ery for scientific data: Some preliminary results. In ACM
SIGMOD, 1994.

[14] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient re-
trieval of similar time sequences under time warping. In
IEEE ICDE, 1998.

