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Abstract
This article develops and illustrates a new knowledge discovery algorithm tailored to the action

requirements of management science applications. The challenge is to develop tactical planning
forecasts at the SKU level. We use a traditional market-response model to extract information from
continuous variables and use datamining techniques on the residuals to extract information from the
many-valued nominal variables such as the manufacturer or merchandise category. This combination
means that a more complete array of information can be used to develop tactical planning forecasts.
The method is illustrated using records of the aggregate sales during promotion events conducted by
a 95-store retail chain in a single trading area. In a longitudinal cross validation, the statistical
forecast (PromoCast™) predicted the exact number of cases of merchandise needed in 49% of the
promotion events and was within * one case in 82% of the events. The dataminer developed rules
from an independent sample of 1.6 million observations and applied these rules to almost 460,000
promotion events in the validation process. The dataminer had sufficient confidence to make
recommendations on 46% of these forecasts. In 66% of those recommendations the dataminer
indicated that the forecast should not be changed. In 96% of those promotion events where “no
change” was recommended this was the correct “action” to take. Even including these “no change”
recommendations, the dataminer decreased the case error by 9% across all promotion events in

which rules applied.
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Introduction

“Turning a mining tool loose in a large data set might produce more than 2,000 findings, all but 20
of them obvious, irrelevant or flawed . . . One tool told us income is higher for people who have big
balances. Well, yippee,” thus warns Mike Eichorst, Vice President of Predictive Modeling and Data
Mining at The Chase Manhattan Bank Corp.'s Consumer Credit unit in New York in the article
“Data Mining for Fool’s Gold” (Computerworld, January 12, 1997). The growth of business
databases has created the need. The rapid expansion of computer resources has created the
potential. Utilizing the potential to fulfill the need has been hampered by a lack of communication
between management scientists and computer scientists. This joint effort describes how datamining
can augment traditional management science tools--market-response models in this instance
(Blattberg and Neslin 1990, Lilien and Rangaswamy 1998, Rao and Steckel 1998)--and what we have
learned from applying a new datamining algorithm to a large-scale, empirical effort aimed at tactical
promotion planning,

Management science is action oriented. Businesses possess vast historical databases, and
managers want to know how the information in them can help proscribe what actions to take in
various sets of current and future circumstances. In our application, we already had a tactical
forecasting tool (PromoCast™) that was calibrated to handle any of the over 150,000 SKUs for
which a promotion event might be planned by a grocery retailer in a particular geographic market
(Cooper et al., in press). That tool has to cope with the huge variability in results, from the six units
that some well known brand might sell in one event to the 250,000 baskets of strawberries that
suddenly appear on sale one February and move over the scanner. The statistical forecaster did this

well. In the first pilot market, almost 49% of the forecasts predicted exactly the number of cases of
product needed. Over 82% of the forecasts were within * one case. However, Procter & Gamble

might claim that, when Tide™ goes on sale at a large discount and appears in major ads, it gets a
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bigger sales boost than estimated by the market-response model. A thousand other manufacturers
could make a similar claim in each particular product category. Market-response models are not
sufficiently robust to respond to the addition of 1,000 dummy variables for the manufacturers, 1,200
dummy variables for the merchandise divisions in a grocery store, 95 variables for the store-by-store
effects, the possible interactions between these sets of indicators, or the possible interactions with
the many other variables in the tactical forecasting model.

The statistical model has been designed to be transportable (after recalibration) across retailers
and geographic markets. PromoCast™ uses 67 variables that capture how the history of each item
(stock keeping unit or SKU) and the history of each store in a trading area combine with a proposed
promotion plan to help retailers decide how much they should expect to sell in an upcoming
promotion event. To characterize the promotion style the model uses unit price, the percentage
discount, whether the promotion is an X-for-the-price-of-Y sale, main effects for ads and displays,
two- and three-way interactions of ads, displays, and the percentage discount, and a large number of
historical averages (e.g., the item’s average promoted sales volume on similar promotions in the focal
store).

In spite of tracking many influences, the parameters that reflect the importance of item-specific
information in PromoCast™ may over-represent or under-represent the importance of that item’s
history for a particular manufacturer. Factors that are specific to a manufacturer, a retail store, or a
geographic area do not fit well with the general scheme of a market-response model. A datamining
algorithm, however, could be great at finding rules such as: “When manufacturer 4 underwrites a
major promotion for its flagship brand B in major market C, the forecast tends to under predict by
D cases.” Nominal variables with many levels ate obvious candidates from which to extract the local
information that could improve a forecast. The statistical forecaster handles the quantitative

(continuous) variables that tend to characterize all markets, while the dataminer handles the
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nominal-scale variables that are more specific to a particular retailer and geography. We do this
sequentially; first, the statistical forecast is developed on the quantitative variables, and then the
dataminer is applied to the residuals from the statistical forecast. In other words, our datamining
tool is oriented to discovering patterns in the residuals that correspond to local knowledge. We then
use this local knowledge to form rules to improve the forecast. As we show, using these rules lets us
know when we can be especially confident in the existing forecast, when we can expect a substantial
overall reduction in forecasting error, and when we are not certain enough to act.

In this paper, we discuss our experience in designing and implementing a datamining tool that
discovers patterns in the residuals that correspond to local knowledge. We do this on an enterprise
scale. Our training database (used to develop rules) is a stratified random sample of more than 1.6
million records pulled out of a total database of more than 19 million records, reflecting retail
grocery promotions from the 95 outlets of a major retailer in a large metropolitan area. Our
population database represents about 30 months' worth of promotion events. Here we present a
validity study based on out-of-sample results — a hold-out sample of almost 460,000 records that
were collected after the statistical model was calibrated and after the local knowledge was mined.

The objective of the project was stated clearly at the beginning: how to produce forecasts that
are useful for promotion planning. Grocers need to know how much stock to order for an
upcoming promotion event. Grocers want to minimize inventory costs and out-of-stock conditions
(often conflicting goals). Manufacturers want to maximize shipments, putting them somewhat at
odds with the goals of the grocers. Possibly mitigating this conflict are the very large databases
containing information on prior promotion experience for each separate SKU in each store within a

retail chain for as far back as good records have been kept. Efficient Market Services, Inc. (ems,

inc.) has been keeping such records on their clients' promotions. Databases exist for over 3,000
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stores, and more are being developed.?

In Figure 1, the overall design is depicted. Cooper et al. (in press) developed a statistical
forecaster called PromoCast™ that has a traditional market-response model orientation. It is a
production forecast, not a custom model. Excluded from this model were nominal variables such as
which manufacturer made the item to be promoted or what class of merchandise was being
promoted (i.e., subcommodity). These two variables alone would add 2,200 dummy variables to the
market-response model even before considering possible interactions of manufacturer or
subcommodity with variables included in the model. A lot of information would be left in the
residuals that would not easily be incorporated into a market-response model. This is the task we set
up for the dataminer. We need a rule-induction algorithm to discover when the information in the
excluded variables indicates that we should modify our forecast. Once a set of discovered rules is
built, we can use such rules to adjust the forecast. This is the task of the “Corrective Action
Generator” module. Such corrective actions suggest an offset (positive or negative) to be added to
the forecasted value in order to get higher overall accuracy.

Insert Figure 1 about here.
Rule syntax and semantics

The datamining algorithm finds rules such as the following:

IF DCS = ‘Gelatin’ and TPR = ‘Very High’ and Mfr = General Foods’

THENU_12_=0,U_4_11=58,U_3 =221, U_2=1149, U_1 = 3583,
Ok=1115,0_1=7,0.2=1,0_3=0,0_411=0,0_12 =0

Where the independent variables in the “if conditions” have the following meaning:

“DCS” stands for the triple “Department-Commodity-Subcommodity," identifying a

particular class of merchandise being promoted (e.g., yogurts, gelatins, or prepared dinners).

2 Seewww.emsinfo.com for more information.
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“TPR” identifies the level of the Temporary Price Reduction. Promotions usually involve
some item price reduction. Values for this variable have been generalized to a set of five possible

discrete values: None, Low, Medium, High and VeryHigh.

“Mfr” identifies the manufacturer of the given product.
The other variables that we mined were:

Promotion conditions “ME” identify a nine-fold, mutually exclusive and exhaustive
classification of the ad and display conditions. Newspaper ads were classified as major ads, minor
ads, or no ads. In-store displays were classified as major displays, minor displays, or no displays. The
“ME” conditions were the cross-classification of this three-by-three classification.

“Model” specifies one of the eight models used in PromoCast™. While the same variables
(as described above) were used, separate parameters were estimated for each of the four major
promotion-planning periods (one-, two-, three-, or four-week duration), crossed with slow-moving
items versus fast-moving items. Slow-moving items were those that were expected to sell less than
10 units a week in an individual store (based on historic performance).

“Store Node” allows for store-specific effects or interactions for each of the 95 stores
belonging to one retail chain in the pilot market.

Errors in the forecast are expressed in a number of cases (i.e., the minimum order quantity for
each particular SKU, usually 12 units in a case). For example, an error of —3 means that we
underestimated the sales for that specific promotion by three cases (“U_3" class), while a value of 5
means that we overestimated five cases (“O_4_11" class). In our application, the entire set of
possible errors has been generalized into a reduced set of 11 possible values for the class variable,
namely:

2. Over by 12 or nore cases;

_12_
4 11: Over by 4 to 11 cases;
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0 3 Over by 3 cases;

(O Over by 2 cases;

o &L Over by 1 case;

Ok: No error

U 1L Under by 1 case;

u 2 Under by 2 cases;

U 3 Under by 3 cases;

U4 11: Under by 4 to 11 cases;
U2 : Under by 12 or nore cases;

The previous rule, for example, states a clear tendency to under forecast products in the
subcommodity “gelatin” for the manufacturer “General Foods” when a large price discount is
offered. As we will see later, we save a lot by specifying a corrective actions in such circumstances
that simply increases our forecast by one case.

We turn now to a discussion of the datamining algorithm we call KDS (Knowledge Discovery

using SQL — Structured Query LLanguage) and the application of KDS to our problem.
Knowledge Discovery from Databases/Data Mining (KDD/DM)

Some remarkable industrial failures cooled down the initial enthusiasm of KDD/DM developets.
The promised wonders of KDD/DM tools have too often resulted in some form of obvious,
superfluous or impractical findings. Datamining advertisements portray a potbellied 30-ish man
dressed only in diapers and tout such findings as “At 6:32 PM every Wednesday, Owen Bly buys
diapers and beer. Do not judge Owen. Accommodate him.” (Wall St. Journal, May 15, 1997, page
B3). Such messages cause the eyes of management scientists, used to enterprise-scale applications, to
glaze over. However, it is not our purpose to discuss the potential uses of datamining for mass
customization of targeting, service, or customer support. Rather, we will demonstrate the ability of a
datamining algorithm to find useful and well supported patterns in data that market-response

models are not designed to harvest.

Printed on 10/22/99 Page 6



KDS is a highly scalable, rule-generating, datamining system that is not bound by physical
memoty, is bottom up, and requires little or no data preprocessing. KDS is implemented, following
the tightly coupled model, with DB2®. The entire algorithm is executed as a sequence of complex
Structured Query Language (SQL) queries sent to the database management system (DBMS). Each
of these attributes is described below.

Rule Generation

The output of KDS is a set of symbolic rules in the form: “if <pattern> then < class-
distribution>”. The pattern is the conjunction of particular values for the independent variables
(e.g, a=A & b=B & ¢=C, where A, B, and C are particular levels of the variables @, b, and c,
respectively). At this time, KDS does not allow continuous variables; only discrete (nominal)
variables currently can be part of the set of explanatory variables. This makes it an ideal complement
for traditional market-response models that thrive on continuous variables, but have problems with
large numbers of dummy variables.” The class-distribution is a frequency distribution of the
dependent measure (number of case errors in our application) of all the input examples satistying
the condition specified on the “if” part. In the following, we refer to conjunctions of the form
“a=A” as one-term patterns and conjunctions of the form “a=A & b=B" as two-term patterns, and
so on.

Top-Down versus Bottom-Up Algorithms

Most of the mining algorithms in the literature are based on a separate-and-conquer approach
(Furkranz, 1996). In a nutshell, this is a recursive procedure where, at each recursion, the input

dataset I is separated in two mutually exclusive and exhaustive parts It and Iz (say all “General

8 Prior ad-hoc discretization can be used to transform continuous variables such as temporary price reduction (TPR) into levels of discount
(e.g., None, Low, Medium, ITigh and Very ITigh).
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Foods” promotions versus all other SKUs). The separation is performed in a way that maximizes a
Junction Y. Different algorithms use different functions; usually they tend to minimize the entropy
of the class distribution on one of the subparts. Hach separation generates a new rule R that covers
all observations in I1 (say all “General Foods” promotions are under-forecast by two cases). In turn,
after R is generated, I is assigned to Iz (the set of observations not covered by R — all SKUs that are
not “General Foods” in this example) and the recursion continues on I (the conguer phase)*. The
recursion halts as soon as no more splitting can take place (i.e., the database is smaller than a given
threshold of support, namely the minimum support).

The most expensive part of these algorithms is the splitting phase in which some form of “for
each possible feature” loop takes place in order to maximize U, that is, an exhaustive search is
performed over the entire set of features. We argue that, when combinations of thousands of
possible features have to be considered, this can be costly for large feature spaces. Besides the
additional complexity of testing thousands of features, a separate-and-conquer approach may be
inefficient since every possible combination of features is tested. Many of these combinations may
not even exist in the input database (e.g., Yoplait diapers, Hamburger Helper batteries). This is a
misplaced legacy inherited from machine-learning practice in which small feature spaces were the
norm and the costs of testing features were small. When dealing with thousands of features, the
possible combinations may be numerous, with many missing combinations. We refer to the process
of testing all possible combinations of features as a top-down approach.

In contrast, KDS works in a bottom-up way, starting from the input database. Rules are built

incrementally, starting from the simplest ones (one-term patterns) and then progressively proceeding

4 Classfication tree discovery algarithms (Quinlan, 1993) are based on a slightly different approach, namely divide-and-conquer. In
such an approach, after the database is lit into nsubparts, the same procedureis recursively caled on each subpart.
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to more specialized rules (two-term, three-term, and so on). The first iteration generates all observed
one-term patterns, the second generates all observed two-term patterns, and so on. Hach iteration
specializes all the patterns generated so far by adding a new term to the “if <pattern>". In each
iteration, a (possibly large) set of new rules is added to the accumulating rule set. The iteration halts
as soon as rules cannot be further specialized because their popularity (number of supporting
records) drops below a specified munimum-support threshold. Since rule popularity decreases
monotonically on each iteration, the process is guaranteed to terminate. The algorithm is sketched in
the Appendix.

As stated above, in a separate-and-conquer approach, the first rule is induced from the
entire input database. Then, all covered examples are removed and the second best rule is induced
on what is leftover. Successive rules are thus induced from smaller and smaller portions of the
database. Such progressive fragmentation of the input database yields reduced numerical support for
rules discovered later in the induction process. Holte et al. (1989) demonstrate that a substantial
proportion of the overall classification error is due to rules covering a small set of observations,
which they call the “small disjuncts problem.” Inducing rules on increasingly smaller sets (as done
in separate-and-conquer algotithms) indirectly —exacerbates the small disjuncts problem. KDS
follows the conquer-without-separating strategy, proposed by Domingos (19962 and 1996b), that
avoids the small disjuncts problem by discovering all rules from the entire input dataset.

No Memory-Bound Processing: Any form of discovery algorithm is inherently memory
intensive. Most of the induction algorithms presented in the machine-learning literature exacerbate
the small disjuncts problem by loading the entire data set (and the discovered knowledge) into the
main memory. If the memory (physical and virtual) is full, the process stops. We have watched a C

implementation of a standard algorithm, CN2 (Clark and Niblett, 1989), crash on a database of
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about 70,000 records (with a large feature set) after about 10 hours of processing, even after
allocating 400 Mbytes of main memory (physical plus virtual memory). Our management science
applications are much larger than this. While recent developments of machine-learning techniques
claim to reduce the cost of rule-finding algorithms (Domingos, 1996a), the cost is often computed
under too ideal situations. Cohen (1995) tested the “Ripper” algorithm on a system with eight RISC
processors and one gigabyte of physical memory. In that relatively ideal computational environment,
the Ripper algorithm was the “best of class.” Our need to be able to scale management science
applications to the enterprise level, however, implies that, in many contexts, not enough physical
memory will be available. The virtual memory facility will be needed. The cost of swapping between
physical and virtual memory invalidates the original cost estimates for an algorithm.

We tried Ripper on our training database using a Windows NT dual processor system (2
X 200Mhz Pentium Pro) equipped with 128 Mbytes internal memory and enough virtual memory to
avoid crashing the algorithm. Even with no other tasks running at the same time, Ripper executed
for 21 days without finishing. Datamining algorithms based on physical and/or virtual memory are
not practical for management science applications of this scope. KDS, in contrast, is implemented in
a tightly coupled (cf. Agrawal and Shim, 1995b and 1996a), client-server model described below.
Whenever the problem size is too large to fit into physical memory, the kind of client-server model
described below should have a substantial practical advantage over CN2 or Ripper.
Minimal data preprocessing: Most discovery algorithms require the input data to be in a specific
format, usually a single, flat-text file. This requires an export operation from the DBMS hosting the
data (i.e., the mining tool is decoupled from the DBMS). Exporting a very large database can be a

lengthy and tedious process, causing an extremely large text file to be generated. The benefits of the

relational data model can no longer be exploited. This leads to data replication and redundancy that
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can make the flat file much larger than the size of the original relational database. Furthermore, data
need to be clean and formatted as requested by the mining tool. Data preprocessing can easily count
for the 70-80% of the total KDD processing time. In the literature, very often, algorithms are
compared on computation time (efficiency) without considering the time spent in data
preprocessing.

In a loosely coupled, client-server model (Agrawal and Shim, 1995b and 1996a) the mining tool
extracts the records from the DBMS one at a time. Such an operation is typically performed through
exploitation of cursors in an embedded SQL application. While this approach eliminates the hassles
of generating and handling large flat text files, in loosely coupled models, substantial data
communication takes place between the client (the mining tool) and the server. The entire database
has to be transferred, record by record, since the processing is performed entirely on the client side
while the data reside in the DBMS.

KDS is implemented as a tightly coupled, client-server model, in which the largest part of the
mining process is implemented on the server. The communication traffic between the two systems is
reduced to delivery of commands and retrieval of results. The client acts as a control to synchronize
the different phases of the process. The complete task is achieved by a sequence of complex queries
execution and/or calls to User Defined Functions (UDFs) (cf. Agrawal and Shim, 1995b). We
believe that the tightly coupled, client-server model is by far the most promising for developing
highly scalable, datamining processes, for reasons relating to how rules are generated, organized, and
ranked. These issues are discussed below.

Rule generation and organization: In most induction algorithms, the rule generation and rule
ranking phases are tightly integrated. A rule-scoring mechanism generates the best rule for each

iteration. This is fine for exploration, but not for action-oriented managerial applications. In
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management science applications, we need to see what stored knowledge tells us about a current
situation and act accordingly. We may not need to take action until long after the learning. However,
we may need to increment what we learn with new information. The advantage, then, goes to a
method that separates the learning phase from the action phase. In KDS, there is a crisp separation
between the rule generation (learning) phase and the action (rule ranking and selection) phase. KDS
creates all the rules from the input database and arranges them in a rule network. The rule ranking
and selection task is postponed until the action phase (discussed below). KDS typically generates a
large set of discovered rules. The rule network optimizes rule retrieval and speeds up the
classification task (i.e., the task of finding which rules in the network apply to a given new situation).
An example of rule network is seen in Figure 2. The lowest levels of the rule network contain the
one-term patterns. Up one level are the two-term patterns, and so on. This architecture simplifies
the process of selecting all rules containing a specific pattern. They are simply identified by all the
ancestors of the node containing the pattern of interest. Each node of the rule network contains the
specification of the pattern itself and the class distribution vector.’

Insert Figure 2 about here.
The Action Phase - Classifying and Acting on New Examples
Once the rule network has been created, we move to the action pbase, in which classification of new
examples takes place. With a rule network in place, a new event occurs. In our case, the new event is
a planned promotion for which a forecast has been made. We need to determine whether to alter

that forecast, given the local knowledge in the rule network. We must figure out which rules apply to

5 In the actual implementation of KDS, we also record entropy, rule coverage, and number of features. This additional information 1s

useful in speeding up the classification process.
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this new event and take the appropriate action. Classification in KDS is performed through the

following steps:

1. Rule selection: find all the rules covering the example to be classified.
2. Rule ranking: select the best rule(s) according to the ranking criterion.
3. Example classification: assign the most likely class of the chosen rule(s) to the input

example (e.g., is it most likely that this event is over-forecast by two cases?).

As explained above, the rule network makes the selection of all rules applying to a new case
efficient. For instance, given the rule network of Figure 2 and the input example {ME = ‘Major Ad
and No Display,” Mfr = ‘General Foods,” Tpr = ‘None,” DCS = Yogurt’}, Figure 3 shows all the
rules in the rule network that are triggered by the input example (i.e., the set of rules covering the
given example). Notice that rules whose pattern contains the feature DCS = ‘gelatin’ have not been
activated since such a condition does not occur in the input example. The selection algorithm starts
from the bottom of the rule network by activating the one-term rules corresponding to the features
of the input example. Then the activation is propagated upward, and each higher node is activated if
all its children are active. The activation goes up to the highest nodes of the network. At this point,
all rules covering the input examples are marked. Among these rules a ranking has to be performed
that indicates to which action class this new example most likely belongs.

Insert Figure 3 about here.
Entropy-based rule ranking is widely exploited in rule classifiers. Entropy is computed from the class
distribution vector. Because there can different costs associated with certain types of
misclassifications in the class distribution, we felt that a simplified procedure would be more robust
(cf. Hand, 1997, p. 7). In the winning-group procedure we developed, the class distribution is

rearranged to perform only three types of corrective actions: No-Action, Add Cases, and Subtract
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Cases. Basically, we use the most populated class in the original distribution to decide the winning
group. For instance, let us consider that the most populated class is “Under_3.” As such, the
winning group will be a new class whose population is obtained by summing up all the Under
classes together, while the others is obtained by summing up all the “Over” classes plus the “Ok”
class. If “Ok” is the winning group, the others is obtained by summing up all the “Over” classes
plus the “Under” class. The entropy is then computed on this two-class distribution. We then store
the rule along with this normalized entropy. An algorithm analysis is presented in the Appendix.
The Action Phase - Corrective Actions

The rule network assures us that we can easily find the set of rules that apply to a new event. We

still, however, must decide which corrective action to take. To aid this, each rule is annotated with
the entropy and confidence value. The entropy value is computed by the formula: £ = =X p log(p),
where the estimates of the p values come from the relative frequencies in the class distribution for a
rule in the calibration data set. The confidence value is computed as: 10,000 x (1 — E), where E' is
the entropy normalized to remove differences due only to the number of categories in a class

distribution. Confidence, basically, gives us an estimate of how strong the rule is, that is, how much
we trust the rule. A class distribution with only one non-empty class, out of the 11 possible classes,
gives us the highest confidence value. Conversely, a uniform distribution, in which all the classes are
equally populated, gives us the highest entropy and the lowest confidence.

A corrective action is taken following a forecast in order to try to reduce error. Cotrective

actions are suggested by the induced rules. Different types of corrective actions can be taken. The
simplest one is based on adjusting the forecast value according to the most likely class. Consider

again the rule:

IF DCS = ‘Gelatin’ and TPR = ‘Very High’ and Mfr = General Foods’
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THENU 12 =0,U 4 11=58,U 3=221,U 2 =1149, U 1 = 3583,
Ok=1115,0 1=7,0 2=1,0 3=0,0 4 11=0,0 12 =0

Here, the simplest (most intuitive) corrective action would suggest incrementing the forecasted value
by one, since the most populated (most likely) class is U_1 (indicating that our forecaster tends to
under-forecast under these specified conditions). This simple action leads to overall improved
accuracy. That is, without the corrective action the total case error for the previous rule is computed
by the class distribution as:

12504+ 4*58+ 37221+ 271149+ 173583+ 0% 1115+ 1*7+2*1+3*0+4*0+12*0=6785

Once we perform the corrective action of adding one case to all estimates, we get the following total
Case errors:

1270+47%0+ 3758427221+ 1*1149+0*3583+ 171115+ 277+ 31+ 4*0+12*0=2897

By shifting one case up, we basically fix the 3,583 U 1 cases (that now lead to an “0” error); we also
reduce the error for all U xx cases. At the same time, we increase the errors for Ok (the 1,115 Ok
cases now have an error of one case each) and all the O xx classes. However, the frequency
distribution after the correction yields a substantial error reduction [ (6785-2897)/6785 = 57.3% ]
for the set of examples covered by that rule. Intuitively, no corrective action should be taken when

the most populated class is “Ok.”

While for this example almost 77% of the forecasts were within * one case, across all events in
this pilot market, over 82% of the forecast errors are within * one case. In light of this a prior:
knowledge, we restricted our actions to a maximum of * one case. We used this method in the
results below, but hope to generalize the method in the future.

Results

The parameters of the statistical forecast were calibrated on 1.3 million observations from a
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stratified random sample of promotion events from the prior 30 months in a large metropolitan
market area for 95 stores of a retail chain. The dataminer was run on nonoverlapping 1.6 million
observations from the same event population, and 28,187 rules were generated. The summaries
reported here are based on a large dataset (459,526 records) from a hold-out, cross validation period
that occurred months after the parameters of the market-response model had been estimated. The
“OKk” class is by far the most populated. As stated earlier, for almost 49% of the promotion events,
the market-response model forecast the correct number of cases. For 82% of the events the model
was within * one case and for 90% of the events the model was within * two cases. The average
absolute error is far less than one case per promotion event. This gives a clear idea of how well the
statistical forecaster works, even before applying the dataminer. The task of the dataminer is
therefore extremely challenging. Even a small improvement (in terms of error reduction) is hard to
achieve since it is on top of an already highly accurate system.

The confidence for acting on a rule was set relatively low (900 out of a maximum value of
10,000)°. The dataminer had sufficient confidence to recommend action on 46% of the forecasts
(209,912 events). In the spirit of the physician’s rule to first do no harm, the dataminer
recommended ‘“No Change” in 66% (138,614) of these events. “No change” was the correct
“action” to take 96% of the times it was recommended. In such instances the dataminer adds
credibility to the original forecast.

The dataminer compensates for the kind of patterns no manager would be expected to recall and
no market-response model would traditionally incorporate. For example, for 2,635 four-week

promotion events for cat food, with a medium level of price reduction, the PromoCast™ over-

© The minimum confidence threshold value depends upon the airrent user’s goal. The higher the value, the fewer rules are created and
the fewer records are classfied. However, these fewer records are classfied with a higher degree of confidence. More gplied studies
have to be conducted before precise guidelines can be developed.
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forecasts 58% of the time and under-forecasts 26% of the time. Simple corrective action leads to a
46% reduction in case errors. For 350 21-day promotion events for Pedigree Dog Food (with a
medium level TPR), PromoCast™ under-forecasts 88% of the time and over-forecasts just 2% of
the time. Simple corrective action reduces case errors by 79%. For long (28-day) promotions for
Yoplait Yogurt (2,445 events), PromoCast™ over-forecasts 59% of the events and under-forecasts
24%. Simple corrective action reduces case errors by 42%. For short (seven-day) promotions for
Dannon Yogurt (1740 events), PromoCast™ under-forecasts 78% of the events, while over-
forecasting just 3%. Simple corrective action reduces case errors by 60%.

In this validation study, the benefit showed mostly on the under-forecast side. That is, the
dataminer tended to catch somewhat more situations where the statistical model under-forecasts
sales. This may, in part, be due to the truncation that occurs in out-of-stock conditions. If the store
runs out of stock the forecast may appear to be too large for a reason that the dataminer cannot
detect. To 2 minor extent, the corrective actions worsened the over-forecast classes. Of course in the
instances when the dataminer suggested that we “correct” an already accurate forecast, the
dataminer worsened case errors. For this to be managerially acceptable we need the overall effect to
be beneficial, which it is in this case. The cumulative case error from PromoCast™ for the 209,912
events in which rules applied was 112,860 cases of merchandise. Across all actions taken (including
“No Change”), the dataminer reduced errors by 10,117 cases (8.9%). To put the 8.9% across the
board improvement in perspective, we report the efforts of Krycha (1999). He provided two teams
with the data used by PromoCast™ and KDS for the pilot market (1.2 million records). One team
consisted of graduate students and two consultants from the SAS Institute Austria. They used the
SAS Enterprise Miner™ to try to reduce case errors. The other team consisted of graduate students
and two consultants from Eudaptics (a statistical consulting group in Vienna that specializes in self-

organizing maps). This group used SOMine™ to try to reduce case errors. After a semester of
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effort, both groups reported that they could not improve on PromoCast™. Viewed from this
perspective, even the 8.9% across the board improvement seems more impressive.

Table 1 summarizes the rules that were used to change forecasts for 209,912 events. Table 2
summarizes the rules that were used to support not changing the forecasts for 249,614 events. We
mined up to four-term rules. Of the rules we used, approximately 75% were either two-term or
three-term rules. The relative frequencies for the number of terms in a rule (i.e., the bottom row of
each table) were stable between rules pointing to a change and rules indicating no change. Over 85%
of the activated rules had more than one term. Remembering back on the problem of adding 1,200
dummy variables for merchandise divisions and 1,000 dummy variables for manufacturer, we now
see that these additions grossly underestimate the specification problem. Over 85% of the actions
we take invoke rules reflecting higher-order interactions. The dataminer represents an enterprise-
scale method for finding these interactions.

Insert Tables 1 and 2 about here.

The cell percent reflects what percentage of n-term rules used the variable in that particular row.
Some interesting patterns emerge. Note in Table 1 (change rules) that no one-term rules appear for
Promotion Condition - ME, Store Node or TPR. For Promotion Condition — ME, this is not too
surprising since a similar term already appears in the model, leaving only higher-order interactions
potentially unused. We also would not expect to have to change all the forecasts relating to a
particular Store Node. TPR is a five-step, categorical variable that is monotonically related to the
discount variable in the PromoCast™ model. However, we would be mistaken to assume that all the
information in TPR is used in the market-response model. We see this when we compare the 0% of
events that invoked one-term rules used TPR to change forecasts (cf. Table 1), while 20% of events
that invoked one-term rules used TPR indicate no change in the forecasts (cf. Table 2). Further

investigation shows that almost all of these “no change” rules involved lower levels of TPR —
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probably reflecting low sales for these event for which one case was sufficient. Similarly, 42% of
one-term rules in Table 2 involve Model. Further investigation shows that when we forecast for
slow movers for longer events (two-, three- or four-week events), we can have extra confidence in
the original PromoCast™ forecast.

Opverall, 30% of the events invoked rules involving manufacturers or merchandise categories (or
both). To get a better feel for how the dataminer would help a manager, we will look at these rules
for the biggest manufacturers and the biggest merchandise categories. Table 3 summarizes the
datamining results for the eight most frequently promoted categories (sub-commodities).
Carbonated beverages are difficult to predict. Where KDS rules apply, the PromoCast™ errors are
nearly four times as big as the average category. KIDS reduces these errors by 14.3%. Even bigger
percentage error reduction occurs for prepared meals, yogurts, and ice creams. For cookies, crackers
and savory snacks, and shampoos the error reduction is modest. Notice that these categories have
small average errors. The rules that KDS finds for the most part say “No Change.”

Table 4 shows the datamining results for the eight most frequently promoted manufacturers. By
far, the largest is the private label category in which the retailer is presented as if it were the
manufacturer. This “manufacturer” cuts across so many areas that we should not be surprised that it
reflects just about the average error reduction of 8.9%. Double-digit error reductions occur with
dataminer rules for General Mills, Kraft, Coca Cola, Frito Lay, and General Foods. Rules for Procter
& Gamble give a 4% error reduction even though the PromoCast™ forecasts for Procter & Gamble
events in these instances are much more accurate than the average.

Insert Tables 3 and 4 about here.
Discussion

Using the discovered rules, we can spot sub-domains in which the PromoCast™ forecast performs

either brilliantly or poorly. The symbolic rule representation gives us a precise, understandable
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description of these sub-domains. There are two primary ways to take advantage of such
information. The first way would be to review the statistical forecast model itself in order to embed
such information. This, in essence, would correct for misspecification of the original statistical
model. This is what modelers typically do. They find what is missing from the original specification
and modify accordingly. However, since any particular rule typically covers only a small percentage
of the total event pool, and since the data driving the improved performance due to the dataminer
are typically nominal-scale variables, the potential for directly modifying the statistical forecast model
is small. We are trying to achieve a synthesis of methods. PromoCast™ is designed to be transported
across markets and retailers. The 67 variables in the basic model will have different importance in
different applications, but the totality (explained variance) should be relatively stable.” The
customization to each retailer-market combination involves the development of local knowledge.
Here the marketing value associated with such information may be large. Manufacturers want
forecasts tailored to their individual merchandize lines. Category managers need help in handling
such demands. The dataminer essentially provides that kind of mass customization. While the results
presented here are for a cross validation dataset, the dataset on which the knowledge is developed
could be used to inform managers when they can have extra confidence in the original PromoCast™
forecast (i.e., when the dataminer indicates the forecast is “Ok," when local knowledge can be used
to improve the forecast, and when we are uncertain, that is, when there are no rules covering a
forecast).

Future directions

Many issues are still open to investigation. Our highest priority concerns the incremental acquisition

of knowledge. Induced knowledge should be persistent and updateable over time in a data-intensive,

" Applications of PromoCast™ in five other pilot markets support this. However, the KDS algorithm has only been applied in the pilot
market described in this report.
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dynamic environment. Incremental learning has received some attention in recent years (Agrawal
and Psaila, 1995a, Shan and Ziarko, 1995, Thomas et al., 1997), but most of the machine-learning-

rooted, rule-induction algorithms are based on a “all-at-once” execution model. This means that data
are read and the rules are generated in just one step. Updating the discovered knowledge with these
algorithms requires a fresh re-mining of the entire database. This situation may be unacceptable in a
dynamic, data-intensive environment. Think of a grocery retailer whose cash registers process
putchases of thousands of different items daily. A good KDD/DM system should be able to update
the knowledge discovered so far with the new incoming records. Because of the separation between
the rule-generation phase and the rule-ranking phase, KDS is capable of doing this. This capacity has
yet to be tested in real applications.

Another new area involves a reorganization of the rule network to extend the rule syntax by
allowing set-valued features in the rule antecedents (Cohen, 1996). This is like considering the “or”

rules as well as the “and” rules emphasized so far. Consider the following two rules:

IF  Tpr=None & IF Tpr= None &
Mfr_Code=General Foods & Mfr_Code= General Foods &
DCS= Luncheon Meats DCS=Puddings

THEN No =0, Ok =115 THEN No =0, Ok =113

They can be merged into the following single rule:

IF Tpr=None & Mfr_Code= General Foods & DCS in {Luncheon Meats, Puddings}
THEN No =0, Ok = 228

The wvariable DCS has been combined into a set of values; notice also the combined class
distribution. The merging of such rules can take place thanks to the overlapping nature of the
antecedents and the uniform class distribution of the two rules. This extension would draw the
dataminer closer to the domains in which CART algorithms are used (Brieman et al. 1984). CART
applied to nominal-scale variables such as those used here, looks at all possible binary splits. This is

totally impractical for a variable such as manufacturer with 1,000 levels or DCS with 1,200 levels.
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We also have begun investigation of a hierarchical or sequential approach to the action stage of
datamining for management science applications. We would first decide whether we should change
the forecast at all. We then would decide whether this new event is going to be an over-forecast or
an under-forecast. If an under-forecast, we would then try to decide how many cases under. Such an
approach would allow us to probe more specifically into what contributes to over- or under-
forecasts. More importantly, this approach should allow us to extend the range of corrective actions
beyond the simple * one case described here. Preliminary research has been encouraging, but more
development is needed.

Limitations

Any technique that focuses on using history (stored knowledge) to help correct future actions has
inherent limitations in new product research and forecasting. Neither PromoCast™ nor KDS have
anything to say about forecasts for new products. In both of these applications, historical data are
the strategic asset being exploited.

Out-of-stock conditions also create a limitation for KDS. Some of the errors arise when the
forecast would be accurate if only the store did not run out of inventory. So we are more likely to
observe errors associated with overstocking than with understocking. The truncation of errors
associated with this issue is very difficult to handle. Cooper et al. (in press) discuss some aspects of
the issue, but a full treatment is not possible within either the statistical model or the dataminer.

The other obvious limitation deals with uses of KIDS for finding model misspecification in
PromoCast™. Our design is one that focuses on using KIDS on information that is not easily
incorporated into a traditional market-response model. To now turn around and say that we could
use KDS to find variables that could be included in the specification of PromoCast™ is somewhat
awkward. KDS is best used in the discrete-variable space, PromoCast™ in the continuous variable

space. There are, however, many exceptions. PromoCast™ uses indicator variables for ads and
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displays, and holiday effects. KDS breaks the continuous variable TPR into bins for “Very High
TPR” and the like. As such, it is possible to use KIDS on such “binned” variables as a way to look
more systematically at model residuals (for possible misspecification). What we really advocate,
however, is that researchers use any tool available to study the residuals from their models. Learning
from what is left behind in model specification is a fundamentally important part of model building.
KDS does this naturally when what is excluded is of a different data type (discrete data) than that
used in the base model (continuous data).

Conclusions

The sequential application of statistical forecaster and dataminer provides a natural way to use a
broader set of information that easily can be used by either. Sure, it is theoretically possible to use
market-response models to incorporate the 28,000 rules we found in this pilot market. Sure, it is
theoretically possible to discretize all the variables used in the market-response model so that they
could be analyzed with the dataminer. But we feel strongly that we are better off using each of the
techniques where each best fits. We feel the benefits demonstrated so far justify our continued

exploration of these techniques.
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Appendix —Algorithm Description and Analysis
Insert Exhibit 1 about here.

KDS works by a progressive rule specialization. The n™ iteration creates all the n-term rules
existing in the input database. Rule coverage (i.e., the number of records “covered” by a rule) must
decrease monotonically at each iteration. The process is halted as soon as further specialization leads
to coverage below the specified minimum support for all new generated rules. Only observed
combinations of features are considered when building rules, which is much more efficient than
algorithms that process all theoretical combinations of features (Clark and Niblett 1989, Cohen
1995). R/N]J represents the set of N-term rules. The set S contains all the N-term rule combinations
assigned to the current record. For instance, say the input record is: {a=10, b=low, c=john}, then
the set S at the second iteration (N=2) contains all two-term conjunctions: {a=10 & b=low, a=10
& c=john, b=low & c=john}. Likewise, the set T is constructed from the elements of S. For
instance, for the clement {a=10, b=low} of S, T would be: {{a=10}, {b=low}}, a set of (N-1)-
term patterns. The notation R/NJ.supp(X) specifies the popularity of the pattern X in the rule set
R[N]. X.class is the class value of the input example X, while R/NJ.class (Y, C) is the frequency of
the class C for the rule Yin the rule set R/N]J.

The rule generation performs a total of & iterations, where £ is either the maximum number of
terms in the patterns before the coverage drops below the minimum support value (for all the new
rules), or the maximum number of terms in the rule antecedents that we feel able to interpret. The
upper bound for k is the number of independent variables. Therefore, the “while loop” in the

algorithm has a cost that is linear in £ and e, where e is the number of input examples. The n"
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iteration exploits the results of the (n-1)™ iteration. For instance, to add the new pattern “a&b&c” at
the 3 iteration, it is necessary (but not sufficient) that “a&b”, “a&c”, “b&c” are all previously
supported. The size s of the set S in the algorithm (shown in Exhibit 1 at n™ iteration) is a///n/(a-n)!],
where a is the total number of independent variables. The set S contains the candidates for new
patterns to be added to the rule set. For each element of S the set of subpatterns is generated and
stored in the set T whose size we refer as t. For each element of T a lookup (with logarithmic cost)
is executed until one element is not supported or all the elements have been verified to be
supported. In the worst case ¢ lookups have to be performed for each of the s elements of S. The
total cost becomes linear in &, e, s, £ and log(l) where [ is the size of the R[n-1] set at the n™ iteration.
Furthermore, for each iteration a pruning loop is executed to remove all new rules that are not
supported (i.e., had fewer instances than the user definable, minimum-support threshold). This
component has a minimal cost that can be omitted in the cost computation. In the previous
computation s is a function of the number of combinations of independent variables, so the cost of
KDS rule generation phase increases roughly with the square of the size of the variable space. The
total cost is not a function of the number of features (i.e., number of levels of a nominally valued
independent variable). This makes KIDS more suitable for databases with a large number of records,
a small number of independent variables each of which has a large number of levels or features. The

cost independence from the number of features makes KDS noise tolerant. Noise in databases
results in some features with minimal support. The bottom-up induction style of KDS leads to very
little additional work for infrequently supported features (recall that no “for each possible feature”

loop takes place in the algorithm). Furthermore, poorly supported features are promptly dropped by
the pruning loop at the end of each iteration. Noise represents a difficult issue for many induction

algorithms whose cost increases an order of magnitude in presence of noisy data. Some algorithm’s
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performance worsens to being a quartic function (€) in noisy domains, where e is the number of
training examples (Cohen, 1995).

In KDS rule ranking occurs during the classification of new examples. Rule selection is actually
executed prior the ranking, only rules applying to the example to be classified are selected. This
greatly reduces the rule search space for the rule-ranking activity. The rule-selection algorithm
described above has a small cost, that is the cost of looking up each feature of the input example in
the one-term rule set. Then an upward search of the rule network will mark all parent rules. This last
operation has negligible cost close due to the indexed structure of the pattern network. This leads to
a total cost for each new record to be classified being a linear function of v and log(l) where v is the
number of independent variables and / is the total number of one-term patterns in the rule network.

The execution of KDS on our large database took a total of five hours with a tightly coupled
implementation with DB2® in a Windows NT system. This is a substantial improvement compared
to the 21 days (and still counting) for the decoupled Ripper implementation.

Table 1. Events Where Rules Change Forecast, N=209912.

Terms in Rule

Variable 1 2 3 4
Promotion Condition - ME 0% 9% 17% 22%
Store Node 0% 10% 11% 7%
Model 27% 29% 27% 23%
Manufacturer 34% 17% 11% 12%
Subcommodity - DCS 39% 19% 11% 13%
TPR 0% 16% 22% 22%

Pct. of Rules in Column 14% 34% 39% 13%
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Table 2. Events Where Rules Do Not Change Forecast, N=249614.

Terms in Rule

Variable 1 2 3 4
Promotion Condition - ME 2% 15% 21% 22%
Store Node 3% 16% 14% 8%
Model 42% 20% 21% 22%
Manufacturer 13% 12% 11% 15%
Subcommodity - DCS 19% 14% 11% 12%
TPR 20% 23% 23% 21%

Pct. of Rules in Column 13% 37% 38% 12%

Table 3. Datamining Results for the 10 Most Frequently Promoted Categories.

Subcommodity No. of Events| PromoCast |PromoCast Case Percent
covered by Errors + KDS [Improvement| Improvement
rules Case Errots
Carbonated Beverages 6827 11165 9573 1592 14.3%
Cookies 4440 1651 1632 19 1.2%
Prepared Meals 4009 2265 1892 373 16.5%
Frozen Pizza 2460 1034 983 51 4.9%
Yogurts 3737 4445 3214 1231 27.7%
Ice Creams 5259 3827 3223 604 15.8%
Crackers & Savory Snacks 3483 1198 1182 16 1.3%
Shampoos 5503 1087 1087 0 0.0%
Table 4. Datamining Results for the 10 Most Frequently Promoted Manufacturers.
Manufacturer No. of Events| PromoCast |PromoCast Case Percent
covered by Errors + KDS  |[Improvement| Improvement
rules Case Errors
Store Private Labels 29972 21983 20028 1955 8.9%
Procter & Gamble 7179 2570 2465 105 4.1%
Nabisco 3805 1466 1435 31 2.1%
General Mills 3745 2808 2231 577 20.5%
Kraft 3663 3081 2761 320 10.4%
Coca Cola 1797 4086 3536 550 13.5%
Frito Lay 616 898 774 124 13.8%
General Foods 3104 3059 2452 607 19.8%
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Exhibit 1 I = input database;
N=1;
Flag = True;
While Flag
Flag = False;
RIN]={}
For each record W in | do
S = {N-term patterns from W},
For each X in S do
T = {(N-1)-term patterns from X},
If (N=1) or
(all elements in T are supported)
then
Flag = True;
If X O R[ N] then
RIN].supp(X) = R[N].supp(X) + 1;
Else
RIN] = R[N] OO {X};
R[N].supp(X) = 1;
End If
Increment R[N].class(X, X.class);
End If
End For

; Pruning by minimum support
For each Y in R[N] do
If R[N].supp( Y) < min-supp then
R[N] = R[N] -;
End If
End For
N=N+1;
End While
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Figure 1. Design System
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Figure 2
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